Abstract nonsense

Frank Tsail

1(Géteborgs universitet)

March 23, 2024



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving

functions



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving
functions

® The notion of topological groups
® Applications in physics and functional analysis



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving
functions
[ ]

The notion of topological groups
® Applications in physics and functional analysis
Lots of similar constructions



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving
functions
[ ]

The notion of topological groups
® Applications in physics and functional analysis
Lots of similar constructions

® Product groups and product topologies



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving
functions
[ ]

The notion of topological groups
® Applications in physics and functional analysis
Lots of similar constructions

® Product groups and product topologies
® Coproduct groups and coproduct topologies



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving
functions
[ ]

The notion of topological groups
® Applications in physics and functional analysis
Lots of similar constructions

® Product groups and product topologies
® Coproduct groups and coproduct topologies
® Quotient groups and quotient topologies



Lots of mathematical theories capturing various things

Topology Group theory
® Spaces e Symmetries of objects
¢ Continuous functions ® Symmetry preserving
functions
[ ]
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Thesis

Category theory as a framework for mathematics



@ Categories



A category consists of...

A collection of objects.
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A category consists of...

A specified identity morphism for each object.
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A category consists of...

A specified composite morphism for any two composable
morphisms.

EC N
ECQ



A category consists of...

A specified composite morphism for any two composable
morphisms.

e
g
gof
C D
U U
id id

These data are subject to the following requirements:
® Associativity: fo(goh)=(fog)oh.
e Unitality: idof = f = f oid.
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® Objects are sets (1 £ (1
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Grp id id
® Objects are groups (1 f (L
® Morphisms are group CAT %8B
homomorphisms
g
® |dentity morphisms are gof
identity functions c s
e Composition is function ) N
composition id id



Top id id
® Objects are topological (1 £ (1

spaces C AT =B
® Morphisms are continuous

functions gof &

® |dentity morphisms are
identity functions

EC AN
Hadw)

e Composition is function
composition



id id
(P.<) 0 0
® Objects are elements of P At B
® A morphism A — B
represents the fact that gof g
A<B
® |dentity morphism is the C D
reflexivity of <: A < A for g g

any element A

e Composition is the
transitivity of <: A< B
and B < C implies A< C



Example

Internal groups

Recall the usual presentation of the theory of groups. To specify a
group structure on an object G (an internal group) is to specify the
following data.

® The group identity: e: 1 — G
® The group inverse: ()™1: G — G
® The group multiplication: m: G x G — G



Example

Internal groups

Recall the usual presentation of the theory of groups. To specify a
group structure on an object G (an internal group) is to specify the
following data.

® The group identity: e: 1 — G

® The group inverse: ()™1: G — G

® The group multiplication: m: G x G — G
These data are required to satisfy the group axioms.

* m(x,e) =x=m(e,x)

e m(x,x 1) =e=m(x"1x)

* m(m(x,y),z) = m(x, m(y, z))
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Example

Internal groups

An internal group in Set
consists of a set A and 3
functions

® group identity e: 1 — A

® group inverse
O1:A- A

e group multiplication
m:AxA— A

satisfying the group axioms.

Observation

An internal group in Top
consists of a topological space
A and 3 continuous functions

® group identity e: 1 — A

® group inverse
Ot:A- A

e group multiplication
m:AxA— A

satisfying the group axioms.

An internal group in Set is a group in the usual sense.
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Functors

Let C and D be categories. A functor F : C — D consists of the
following data.

® An action on objects: each object of C is mapped to an object
of D

e An action on morphisms: each morphism ¢ — ¢’ is mapped to
a morphism Fc — Fc’
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Functors

Let C and D be categories. A functor F : C — D consists of the
following data.

® An action on objects: each object of C is mapped to an object
of D

e An action on morphisms: each morphism ¢ — ¢’ is mapped to
a morphism Fc — Fc’

® Suppressed throughout this talk, but it is an essential piece of
data of a functor

These data are required to satisfy the following conditions.
o F(id,) = idp
® f(fog)=FfoFg



e The forgetful functor U : Grp — Set mapping each group to
its underlying set
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e The forgetful functor U : Grp — Set mapping each group to
its underlying set

® The free functor F : Set — Grp mapping each set to the free
group on that set

® The discrete topology functor D : Set — Top equipping each
set with the discrete topology

e The indiscrete topology functor / : Set — Top equipping each
set with the indiscrete topology

® The fundamental group functor 1 : Top, — Grp mapping
each pointed space to the group of closed paths in that space

® The functor Maybe : Set — Set mapping each set S to the
underlying set of S freely adjoined with a point

® The Grp(—,J) : Grp — Set mapping each group / to the set of
all group homomorphisms | — J.
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Universality

Motivating examples

We know what products look like in Set. We can generalize its
definition to other categories (e.g., Grp). Let G and H be groups.
Their product G x H is a group equipped with 2 group
homomorphisms 7; and 5.

GxH

G H



Universality

Motivating examples

We know what products look like in Set. We can generalize its
definition to other categories (e.g., Grp). Let G and H be groups.
Their product G x H is a group equipped with 2 group
homomorphisms 7; and 5.

GxH
LN
G H

We want this solution to be (1) general and (2) efficient.

@ For any element g of G and any element h of H, there is an
element (g, h) of G x H such that m1(g, h) = g and
772(g, h) =h

® For any element f of G x H, if myf = g and mof = h then
f= (g> h)



Universality

Motivating examples

We want this solution to be (1) general and (2) efficient, expressed
diagrammatically:

GxH



Universality

Motivating examples

/
H(g:h
g + h
GxH
G H

Observation

The generality and efficiency conditions can be encoded as an
isomorphism (“natural” in /).

Grp(l, G x H) = Grp(/, G) x Grp(/, H)



Representable functors

A set-valued functor F : C — Set is representable if there is an
object ¢ € C and a (natural) isomorphism

C(_v C) =F-
or
C(Ca _) =F-

The object c is called a representing object.



Example: coproducts

In Set, we know what disjoint unions (coproducts) look like. We
can generalize this to other categories. The coproduct of two
groups G and H is the representing object of the functor

Grp(G, —) W Grp(H, —) mapping each group / to the disjoint union
of the set of all group homomorphisms G — | and the set of all
group homomorphisms H — . This is represented by the free
product (confusingly).

Grp(G +H, _) = Grp(G7 _) W GI’p(H, _)
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groups G and H is the representing object of the functor
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product (confusingly).
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Diagrammatically,



Example: graph coloring

The functor n-Color mapping each graph to the set of all
n-colorings is represented by the complete graph K.

Graph(—, K,,) = n-Color—
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Example: graph coloring

The functor n-Color mapping each graph to the set of all
n-colorings is represented by the complete graph K.

Graph(—, K,) = n-Color—

e Under this isomorphism, the identity graph homomorphism
idk, € Graph(K,, K,,) corresponds to an n-coloring in
n-Color(K,). This is called the universal n-coloring.

® Every graph homomorphism f : G — K,, determines a unique
n-coloring on G by taking the inverse image f~! on the
universal n-coloring.
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truth values.
Set(-,B) = P-
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Example: powerset

The powerset functor P : Set — Set is represented by the set of
truth values.

Set(-,B) = P-

® A proposition ¢ is just a function ¢ : S — B. Every
proposition ¢ : S — B uniquely determines a subset of S.

e Similarly, every subset of S is classified by a unique proposition
v:S5—B.

® The subset classified by ¢ : S — B has a simple description:

{seSle(s) =t}
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