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Motivation

Lots of mathematical theories capturing various things

Topology
• Spaces
• Continuous functions

Group theory
• Symmetries of objects
• Symmetry preserving

functions

• The notion of topological groups
• Applications in physics and functional analysis

• Lots of similar constructions

• Product groups and product topologies
• Coproduct groups and coproduct topologies
• Quotient groups and quotient topologies

Thesis

Category theory as a framework for mathematics
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3 Universality



Categories

A category consists of...

A collection of objects.

A B

C D

These data are subject to the following requirements:
• Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h.
• Unitality: id ◦ f = f = f ◦ id.
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A collection of morphisms.
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These data are subject to the following requirements:
• Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h.
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Examples

Set
• Objects are sets
• Morphisms are functions
• Identity morphisms are

identity functions
• Composition is function

composition

A B

C D

f

g
g◦f

id id

id id
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Grp
• Objects are groups
• Morphisms are group

homomorphisms
• Identity morphisms are

identity functions
• Composition is function
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Examples

Top
• Objects are topological

spaces
• Morphisms are continuous

functions
• Identity morphisms are

identity functions
• Composition is function

composition

A B

C D

f

g
g◦f

id id

id id



Examples

(P,≤)

• Objects are elements of P
• A morphism A → B

represents the fact that
A ≤ B

• Identity morphism is the
reflexivity of ≤: A ≤ A for
any element A

• Composition is the
transitivity of ≤: A ≤ B
and B ≤ C implies A ≤ C

A B

C D

f

g
g◦f

id id

id id



Example
Internal groups

Recall the usual presentation of the theory of groups. To specify a
group structure on an object G (an internal group) is to specify the
following data.

• The group identity: e : 1 → G

• The group inverse: ()−1 : G → G

• The group multiplication: m : G × G → G

These data are required to satisfy the group axioms.
• m(x , e) = x = m(e, x)

• m(x , x−1) = e = m(x−1, x)

• m(m(x , y), z) = m(x ,m(y , z))
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Example

G G × G G

G

(e,idG )

m
idG

(idG ,e)

idG

G G × G G

G

(idG ,()
−1) (()−1,idG )

m
idG idG

G × G × G G × G

G × G Gm

midG×m

m×idG



Example
Internal groups

An internal group in Set
consists of a set A and 3
functions
• group identity e : 1 → A

• group inverse
()−1 : A → A

• group multiplication
m : A× A → A

satisfying the group axioms.

An internal group in Top
consists of a topological space
A and 3 continuous functions
• group identity e : 1 → A

• group inverse
()−1 : A → A

• group multiplication
m : A× A → A

satisfying the group axioms.

Observation

An internal group in Set is a group in the usual sense.
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Functors

Let C and D be categories. A functor F : C → D consists of the
following data.

• An action on objects: each object of C is mapped to an object
of D

• An action on morphisms: each morphism c → c ′ is mapped to
a morphism Fc → Fc ′

• Suppressed throughout this talk, but it is an essential piece of
data of a functor

These data are required to satisfy the following conditions.
• F (ida) = idFa

• F (f ◦ g) = Ff ◦ Fg
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Examples

• The forgetful functor U : Grp → Set mapping each group to
its underlying set

• The free functor F : Set → Grp mapping each set to the free
group on that set

• The discrete topology functor D : Set → Top equipping each
set with the discrete topology

• The indiscrete topology functor I : Set → Top equipping each
set with the indiscrete topology

• The fundamental group functor π1 : Top∗ → Grp mapping
each pointed space to the group of closed paths in that space

• The functor Maybe : Set → Set mapping each set S to the
underlying set of S freely adjoined with a point

• The Grp(– , J) : Grp → Set mapping each group I to the set of
all group homomorphisms I → J.
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Universality
Motivating examples

We know what products look like in Set. We can generalize its
definition to other categories (e.g., Grp). Let G and H be groups.
Their product G × H is a group equipped with 2 group
homomorphisms π1 and π2.

G × H

G H

π1 π2

We want this solution to be (1) general and (2) efficient.
1 For any element g of G and any element h of H, there is an

element (g , h) of G × H such that π1(g , h) = g and
π2(g , h) = h

2 For any element f of G × H, if π1f = g and π2f = h then
f = (g , h)
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Universality
Motivating examples

We want this solution to be (1) general and (2) efficient, expressed
diagrammatically:

I

G × H

G H

π1 π2

g h
(g ,h)



Universality
Motivating examples

I

G × H

G H

π1 π2

g h
(g ,h)

Observation

The generality and efficiency conditions can be encoded as an
isomorphism (“natural” in I ).

Grp(I ,G × H) ∼= Grp(I ,G )× Grp(I ,H)



Representable functors

A set-valued functor F : C → Set is representable if there is an
object c ∈ C and a (natural) isomorphism

C(– , c) ∼= F –

or

C(c, –) ∼= F –

The object c is called a representing object.



Example: coproducts

In Set, we know what disjoint unions (coproducts) look like. We
can generalize this to other categories. The coproduct of two
groups G and H is the representing object of the functor
Grp(G , –) ⊎ Grp(H, –) mapping each group I to the disjoint union
of the set of all group homomorphisms G → I and the set of all
group homomorphisms H → I . This is represented by the free
product (confusingly).

Grp(G + H, –) ∼= Grp(G , –) ⊎ Grp(H, –)

Diagrammatically,

I

G + H

G H

ι1 ι2

g h
[g ,h]
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Example: graph coloring

The functor n-Color mapping each graph to the set of all
n-colorings is represented by the complete graph Kn.

Graph(– ,Kn) ∼= n-Color–

• Under this isomorphism, the identity graph homomorphism
idKn ∈ Graph(Kn,Kn) corresponds to an n-coloring in
n-Color(Kn). This is called the universal n-coloring.

• Every graph homomorphism f : G → Kn determines a unique
n-coloring on G by taking the inverse image f −1 on the
universal n-coloring.
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Example: powerset

The powerset functor P : Set → Set is represented by the set of
truth values.

Set(– ,B) ∼= P –

• A proposition φ is just a function φ : S → B. Every
proposition φ : S → B uniquely determines a subset of S .

• Similarly, every subset of S is classified by a unique proposition
φ : S → B.

• The subset classified by φ : S → B has a simple description:

{ s ∈ S | φ(s) = t }
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Suggested reading

Tom Leinster.
Basic category theory.
Cambridge University Press, 2014.

E. Riehl.
Category theory in context.
Aurora: Dover modern math originals. Dover Publications,
2017.
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