Abstract nonsense

Frank Tsai¹

¹(Göteborgs universitet)

March 23, 2024

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

- Symmetries of objects
- Symmetry preserving functions

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
 - Applications in physics and functional analysis

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
 - Applications in physics and functional analysis
- Lots of similar constructions

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
 - Applications in physics and functional analysis
- Lots of similar constructions
 - Product groups and product topologies

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
 - Applications in physics and functional analysis
- Lots of similar constructions
 - Product groups and product topologies
 - Coproduct groups and coproduct topologies

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
 - Applications in physics and functional analysis
- Lots of similar constructions
 - Product groups and product topologies
 - Coproduct groups and coproduct topologies
 - Quotient groups and quotient topologies

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

Group theory

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
 - Applications in physics and functional analysis
- Lots of similar constructions
 - Product groups and product topologies
 - Coproduct groups and coproduct topologies
 - Quotient groups and quotient topologies

Thesis

Category theory as a framework for mathematics

A category consists of ...

A collection of *objects*.

Α

С

В

D

A category consists of ...

A collection of *morphisms*.

A category consists of ...

A specified *identity* morphism for each object.

A category consists of ...

A specified *composite* morphism for any two composable morphisms.

A category consists of ...

A specified *composite* morphism for any two composable morphisms.

These data are subject to the following requirements:

- Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$.
- Unitality: $id \circ f = f = f \circ id$.

Set

- Objects are sets
- Morphisms are functions
- Identity morphisms are identity functions
- Composition is function composition

Grp

- Objects are groups
- Morphisms are group homomorphisms
- Identity morphisms are identity functions
- Composition is function composition

Тор

- Objects are topological spaces
- Morphisms are continuous functions
- Identity morphisms are identity functions
- Composition is function composition

 (P,\leq)

- Objects are elements of P
- A morphism $A \rightarrow B$ represents the fact that $A \leq B$
- Identity morphism is the reflexivity of ≤: A ≤ A for any element A
- Composition is the transitivity of ≤: A ≤ B and B ≤ C implies A ≤ C

Recall the usual presentation of the theory of groups. To specify a group structure on an object G (an *internal group*) is to specify the following data.

- The group identity: e:1
 ightarrow G
- The group inverse: ()^{-1}: G
 ightarrow G
- The group multiplication: $m: G \times G \rightarrow G$

Recall the usual presentation of the theory of groups. To specify a group structure on an object G (an *internal group*) is to specify the following data.

- The group identity: e:1
 ightarrow G
- The group inverse: () $^{-1}: G
 ightarrow G$
- The group multiplication: $m: G \times G \rightarrow G$

These data are required to satisfy the group axioms.

•
$$m(x,e) = x = m(e,x)$$

- $m(x, x^{-1}) = e = m(x^{-1}, x)$
- m(m(x, y), z) = m(x, m(y, z))

Example Internal groups

> An internal group in Set consists of a *set A* and 3 *functions*

- group identity e: 1
 ightarrow A
- group inverse $()^{-1}: A \rightarrow A$
- group multiplication $m: A \times A \rightarrow A$

satisfying the group axioms.

Observation

An internal group in Set is a group in the usual sense.

An internal group in Top consists of a *topological space A* and 3 *continuous functions*

- group identity e:1
 ightarrow A
- group inverse $()^{-1}: A \rightarrow A$
- group multiplication $m: A \times A \rightarrow A$

satisfying the group axioms.

Functors

Let C and D be categories. A *functor* $F : C \rightarrow D$ consists of the following data.

- An *action on objects*: each object of C is mapped to an object of D
- An action on morphisms: each morphism $c \to c'$ is mapped to a morphism $Fc \to Fc'$

Functors

Let C and D be categories. A *functor* $F : C \rightarrow D$ consists of the following data.

- An *action on objects*: each object of C is mapped to an object of D
- An action on morphisms: each morphism $c \to c'$ is mapped to a morphism $Fc \to Fc'$

These data are required to satisfy the following conditions.

•
$$F(\mathrm{id}_a) = \mathrm{id}_{Fa}$$

•
$$F(f \circ g) = Ff \circ Fg$$

Let C and D be categories. A *functor* $F : C \to D$ consists of the following data.

- An *action on objects*: each object of C is mapped to an object of D
- An action on morphisms: each morphism $c \to c'$ is mapped to a morphism $Fc \to Fc'$
 - Suppressed throughout this talk, but it is an **essential** piece of data of a functor

These data are required to satisfy the following conditions.

•
$$F(\mathrm{id}_a) = \mathrm{id}_{Fa}$$

•
$$F(f \circ g) = Ff \circ Fg$$

• The forgetful functor $U: \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set

- The forgetful functor $U: \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set
- The free functor $F : Set \rightarrow Grp$ mapping each set to the free group on that set

- The forgetful functor $U: \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set
- The free functor $F : Set \rightarrow Grp$ mapping each set to the free group on that set
- The discrete topology functor $D: Set \rightarrow Top$ equipping each set with the discrete topology

- The forgetful functor $U : \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set
- The free functor $F : Set \rightarrow Grp$ mapping each set to the free group on that set
- The discrete topology functor $D: \mathsf{Set} \to \mathsf{Top}$ equipping each set with the discrete topology
- The indiscrete topology functor *I* : Set → Top equipping each set with the indiscrete topology

- The forgetful functor $U : \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set
- The free functor $F : Set \rightarrow Grp$ mapping each set to the free group on that set
- The discrete topology functor $D: \mathsf{Set} \to \mathsf{Top}$ equipping each set with the discrete topology
- The indiscrete topology functor *I* : Set → Top equipping each set with the indiscrete topology
- The fundamental group functor π_1 : Top_{*} \rightarrow Grp mapping each pointed space to the group of closed paths in that space

- The forgetful functor $U : \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set
- The free functor $F : Set \rightarrow Grp$ mapping each set to the free group on that set
- The discrete topology functor $D: \mathsf{Set} \to \mathsf{Top}$ equipping each set with the discrete topology
- The indiscrete topology functor *I* : Set → Top equipping each set with the indiscrete topology
- The fundamental group functor π_1 : Top_{*} \rightarrow Grp mapping each pointed space to the group of closed paths in that space
- The functor Maybe : Set → Set mapping each set S to the underlying set of S freely adjoined with a point

- The forgetful functor $U : \operatorname{Grp} \to \operatorname{Set}$ mapping each group to its underlying set
- The free functor $F : Set \rightarrow Grp$ mapping each set to the free group on that set
- The discrete topology functor $D: \mathsf{Set} \to \mathsf{Top}$ equipping each set with the discrete topology
- The indiscrete topology functor *I* : Set → Top equipping each set with the indiscrete topology
- The fundamental group functor π_1 : Top_{*} \rightarrow Grp mapping each pointed space to the group of closed paths in that space
- The functor Maybe : Set \rightarrow Set mapping each set S to the underlying set of S freely adjoined with a point
- The Grp(−, J) : Grp → Set mapping each group I to the set of all group homomorphisms I → J.

We know what products look like in Set. We can generalize its definition to other categories (e.g., Grp). Let *G* and *H* be groups. Their *product* $G \times H$ is a group equipped with 2 group homomorphisms π_1 and π_2 .

We know what products look like in Set. We can generalize its definition to other categories (e.g., Grp). Let *G* and *H* be groups. Their *product* $G \times H$ is a group equipped with 2 group homomorphisms π_1 and π_2 .

We want this solution to be (1) general and (2) efficient.

- For any element g of G and any element h of H, there is an element (g, h) of G × H such that π₁(g, h) = g and π₂(g, h) = h
- **2** For any element f of $G \times H$, if $\pi_1 f = g$ and $\pi_2 f = h$ then f = (g, h)

We want this solution to be (1) general and (2) efficient, expressed diagrammatically:

Universality Motivating examples

Observation

The generality and efficiency conditions can be encoded as an isomorphism ("natural" in I).

$$\operatorname{Grp}(I, G \times H) \cong \operatorname{Grp}(I, G) \times \operatorname{Grp}(I, H)$$

Representable functors

A set-valued functor $F : C \rightarrow Set$ is *representable* if there is an object $c \in C$ and a (natural) isomorphism

$$C(-, c) \cong F-$$

or

$$C(c, -) \cong F -$$

The object *c* is called a *representing* object.

Example: coproducts

In Set, we know what disjoint unions (coproducts) look like. We can generalize this to other categories. The coproduct of two groups G and H is the representing object of the functor $\operatorname{Grp}(G, -) \uplus \operatorname{Grp}(H, -)$ mapping each group I to the disjoint union of the set of all group homomorphisms $G \to I$ and the set of all group homomorphisms $H \to I$. This is represented by the free product (confusingly).

 $\operatorname{Grp}(G + H, -) \cong \operatorname{Grp}(G, -) \uplus \operatorname{Grp}(H, -)$

Example: coproducts

In Set, we know what disjoint unions (coproducts) look like. We can generalize this to other categories. The coproduct of two groups G and H is the representing object of the functor $\operatorname{Grp}(G, -) \uplus \operatorname{Grp}(H, -)$ mapping each group I to the disjoint union of the set of all group homomorphisms $G \to I$ and the set of all group homomorphisms $H \to I$. This is represented by the free product (confusingly).

$$\operatorname{Grp}(G + H, -) \cong \operatorname{Grp}(G, -) \uplus \operatorname{Grp}(H, -)$$

Diagrammatically,

Example: graph coloring

The functor *n*-Color mapping each graph to the set of all *n*-colorings is represented by the complete graph K_n .

 $Graph(-, K_n) \cong n$ -Color-

Example: graph coloring

The functor *n*-Color mapping each graph to the set of all *n*-colorings is represented by the complete graph K_n .

 $Graph(-, K_n) \cong n$ -Color-

Under this isomorphism, the identity graph homomorphism id_{Kn} ∈ Graph(Kn, Kn) corresponds to an n-coloring in n-Color(Kn). This is called the *universal n-coloring*.

Example: graph coloring

The functor *n*-Color mapping each graph to the set of all *n*-colorings is represented by the complete graph K_n .

 $Graph(-, K_n) \cong n$ -Color-

- Under this isomorphism, the identity graph homomorphism $\operatorname{id}_{K_n} \in \operatorname{Graph}(K_n, K_n)$ corresponds to an *n*-coloring in *n*-Color(K_n). This is called the *universal n-coloring*.
- Every graph homomorphism f : G → K_n determines a unique n-coloring on G by taking the inverse image f⁻¹ on the universal n-coloring.

The powerset functor $P : Set \rightarrow Set$ is represented by the set of truth values.

 $\mathsf{Set}(-,\mathbb{B})\cong P-$

The powerset functor $P : Set \rightarrow Set$ is represented by the set of truth values.

$$\mathsf{Set}(-,\mathbb{B})\cong P-$$

A proposition φ is just a function φ : S → B. Every proposition φ : S → B uniquely determines a subset of S.

The powerset functor $P : Set \rightarrow Set$ is represented by the set of truth values.

$$\mathsf{Set}(-,\mathbb{B})\cong P-$$

- A proposition φ is just a function φ : S → B. Every proposition φ : S → B uniquely determines a subset of S.
- Similarly, every subset of S is *classified* by a unique proposition $\varphi: S \to \mathbb{B}$.

The powerset functor $P : Set \rightarrow Set$ is represented by the set of truth values.

$$\mathsf{Set}(-,\mathbb{B})\cong P-$$

- A proposition φ is just a function φ : S → B. Every proposition φ : S → B uniquely determines a subset of S.
- Similarly, every subset of S is *classified* by a unique proposition $\varphi: S \to \mathbb{B}$.
- The subset classified by $\varphi: S \to \mathbb{B}$ has a simple description:

$$\{ s \in S \mid \varphi(s) = t \}$$

Suggested reading

Tom Leinster.

Basic category theory. Cambridge University Press, 2014.

🔋 E. Riehl.

Category theory in context.

Aurora: Dover modern math originals. Dover Publications, 2017.