Abstract nonsense

Frank Tsai ${ }^{1}$

${ }^{1}$ (Göteborgs universitet)
March 23, 2024

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

Group theory

- Symmetries of objects
- Symmetry preserving functions

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions
- The notion of topological groups
- Applications in physics and functional analysis

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions
- The notion of topological groups
- Applications in physics and functional analysis
- Lots of similar constructions

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions
- The notion of topological groups
- Applications in physics and functional analysis
- Lots of similar constructions
- Product groups and product topologies

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions
- The notion of topological groups
- Applications in physics and functional analysis
- Lots of similar constructions
- Product groups and product topologies
- Coproduct groups and coproduct topologies

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

Group theory

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
- Applications in physics and functional analysis
- Lots of similar constructions
- Product groups and product topologies
- Coproduct groups and coproduct topologies
- Quotient groups and quotient topologies

Motivation

Lots of mathematical theories capturing various things

Topology

- Spaces
- Continuous functions

Group theory

- Symmetries of objects
- Symmetry preserving functions
- The notion of topological groups
- Applications in physics and functional analysis
- Lots of similar constructions
- Product groups and product topologies
- Coproduct groups and coproduct topologies
- Quotient groups and quotient topologies

Thesis

Category theory as a framework for mathematics

Outline

(1) Categories
(2) Functors
(3) Universality

Categories

A category consists of...
A collection of objects.
$A \quad B$

C
D

Categories

A category consists of...
A collection of morphisms.

Categories

A category consists of...
A specified identity morphism for each object.

Categories

A category consists of...
A specified composite morphism for any two composable morphisms.

Categories

A category consists of...
A specified composite morphism for any two composable morphisms.

These data are subject to the following requirements:

- Associativity: $f \circ(g \circ h)=(f \circ g) \circ h$.
- Unitality: id $\circ f=f=f \circ \mathrm{id}$.

Examples

Set

- Objects are sets
- Morphisms are functions
- Identity morphisms are identity functions
- Composition is function composition

Examples

Grp

- Objects are groups
- Morphisms are group homomorphisms
- Identity morphisms are identity functions
- Composition is function composition

Examples

Top

- Objects are topological spaces
- Morphisms are continuous functions
- Identity morphisms are identity functions
- Composition is function composition

Examples

$$
(P, \leq)
$$

- Objects are elements of P
- A morphism $A \rightarrow B$ represents the fact that $A \leq B$
- Identity morphism is the reflexivity of $\leq: A \leq A$ for any element A
- Composition is the transitivity of $\leq: A \leq B$ and $B \leq C$ implies $A \leq C$

Example

Recall the usual presentation of the theory of groups. To specify a group structure on an object G (an internal group) is to specify the following data.

- The group identity: $e: 1 \rightarrow G$
- The group inverse: ()$^{-1}: G \rightarrow G$
- The group multiplication: $m: G \times G \rightarrow G$

Example

Internal groups

Recall the usual presentation of the theory of groups. To specify a group structure on an object G (an internal group) is to specify the following data.

- The group identity: $e: 1 \rightarrow G$
- The group inverse: ()$^{-1}: G \rightarrow G$
- The group multiplication: $m: G \times G \rightarrow G$

These data are required to satisfy the group axioms.

- $m(x, e)=x=m(e, x)$
- $m\left(x, x^{-1}\right)=e=m\left(x^{-1}, x\right)$
- $m(m(x, y), z)=m(x, m(y, z))$

Example

Example

An internal group in Set consists of a set A and 3 functions

- group identity e: $1 \rightarrow A$
- group inverse

$$
()^{-1}: A \rightarrow A
$$

- group multiplication $m: A \times A \rightarrow A$
satisfying the group axioms.

An internal group in Top consists of a topological space A and 3 continuous functions

- group identity e: $1 \rightarrow A$
- group inverse

$$
()^{-1}: A \rightarrow A
$$

- group multiplication $m: A \times A \rightarrow A$
satisfying the group axioms.

Observation

An internal group in Set is a group in the usual sense.

Outline

(1) Categories

(2) Functors
(3) Universality

Functors

Let C and D be categories. A functor $F: C \rightarrow D$ consists of the following data.

- An action on objects: each object of C is mapped to an object of D
- An action on morphisms: each morphism $c \rightarrow c^{\prime}$ is mapped to a morphism $F c \rightarrow F c^{\prime}$

Functors

Let C and D be categories. A functor $F: C \rightarrow D$ consists of the following data.

- An action on objects: each object of C is mapped to an object of D
- An action on morphisms: each morphism $c \rightarrow c^{\prime}$ is mapped to a morphism $F c \rightarrow F c^{\prime}$

These data are required to satisfy the following conditions.

- $F\left(\mathrm{id}_{a}\right)=\mathrm{id}_{F a}$
- $F(f \circ g)=F f \circ F g$

Functors

Let C and D be categories. A functor $F: C \rightarrow D$ consists of the following data.

- An action on objects: each object of C is mapped to an object of D
- An action on morphisms: each morphism $c \rightarrow c^{\prime}$ is mapped to a morphism $F c \rightarrow F c^{\prime}$
- Suppressed throughout this talk, but it is an essential piece of data of a functor
These data are required to satisfy the following conditions.
- $F\left(\mathrm{id}_{a}\right)=\mathrm{id}_{F a}$
- $F(f \circ g)=F f \circ F g$

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set
- The free functor $F:$ Set \rightarrow Grp mapping each set to the free group on that set

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set
- The free functor $F:$ Set \rightarrow Grp mapping each set to the free group on that set
- The discrete topology functor D : Set \rightarrow Top equipping each set with the discrete topology

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set
- The free functor $F:$ Set \rightarrow Grp mapping each set to the free group on that set
- The discrete topology functor $D:$ Set \rightarrow Top equipping each set with the discrete topology
- The indiscrete topology functor I : Set \rightarrow Top equipping each set with the indiscrete topology

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set
- The free functor $F:$ Set \rightarrow Grp mapping each set to the free group on that set
- The discrete topology functor $D:$ Set \rightarrow Top equipping each set with the discrete topology
- The indiscrete topology functor I : Set \rightarrow Top equipping each set with the indiscrete topology
- The fundamental group functor π_{1} : Top $_{*} \rightarrow$ Grp mapping each pointed space to the group of closed paths in that space

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set
- The free functor $F:$ Set \rightarrow Grp mapping each set to the free group on that set
- The discrete topology functor D : Set \rightarrow Top equipping each set with the discrete topology
- The indiscrete topology functor I : Set \rightarrow Top equipping each set with the indiscrete topology
- The fundamental group functor π_{1} : Top $_{*} \rightarrow$ Grp mapping each pointed space to the group of closed paths in that space
- The functor Maybe : Set \rightarrow Set mapping each set S to the underlying set of S freely adjoined with a point

Examples

- The forgetful functor $U:$ Grp \rightarrow Set mapping each group to its underlying set
- The free functor $F:$ Set \rightarrow Grp mapping each set to the free group on that set
- The discrete topology functor D : Set \rightarrow Top equipping each set with the discrete topology
- The indiscrete topology functor I : Set \rightarrow Top equipping each set with the indiscrete topology
- The fundamental group functor $\pi_{1}:$ Top $_{*} \rightarrow$ Grp mapping each pointed space to the group of closed paths in that space
- The functor Maybe : Set \rightarrow Set mapping each set S to the underlying set of S freely adjoined with a point
- The $\operatorname{Grp}(-, J): \operatorname{Grp} \rightarrow$ Set mapping each group I to the set of all group homomorphisms $I \rightarrow J$.

Outline

(1) Categories

(2) Functors
(3) Universality

Universality

Motivating examples

We know what products look like in Set. We can generalize its definition to other categories (e.g., Grp). Let G and H be groups. Their product $G \times H$ is a group equipped with 2 group homomorphisms π_{1} and π_{2}.

Universality

We know what products look like in Set. We can generalize its definition to other categories (e.g., Grp). Let G and H be groups. Their product $G \times H$ is a group equipped with 2 group homomorphisms π_{1} and π_{2}.

We want this solution to be (1) general and (2) efficient.
(1) For any element g of G and any element h of H, there is an element (g, h) of $G \times H$ such that $\pi_{1}(g, h)=g$ and $\pi_{2}(g, h)=h$
(2) For any element f of $G \times H$, if $\pi_{1} f=g$ and $\pi_{2} f=h$ then $f=(g, h)$

Universality

Motivating examples

We want this solution to be (1) general and (2) efficient, expressed diagrammatically:

Universality

Motivating examples

Observation

The generality and efficiency conditions can be encoded as an isomorphism ("natural" in I).

$$
\operatorname{Grp}(I, G \times H) \cong \operatorname{Grp}(I, G) \times \operatorname{Grp}(I, H)
$$

Representable functors

A set-valued functor $F: C \rightarrow$ Set is representable if there is an object $c \in C$ and a (natural) isomorphism

$$
\begin{gathered}
C(-, c) \cong F- \\
\text { or } \\
C(c,-) \cong F_{-}
\end{gathered}
$$

The object c is called a representing object.

Example: coproducts

In Set, we know what disjoint unions (coproducts) look like. We can generalize this to other categories. The coproduct of two groups G and H is the representing object of the functor $\operatorname{Grp}(G,-) \uplus \operatorname{Grp}(H,-)$ mapping each group $/$ to the disjoint union of the set of all group homomorphisms $G \rightarrow I$ and the set of all group homomorphisms $H \rightarrow I$. This is represented by the free product (confusingly).

$$
\operatorname{Grp}(G+H,-) \cong \operatorname{Grp}(G,-) \uplus \operatorname{Grp}(H,-)
$$

Example: coproducts

In Set, we know what disjoint unions (coproducts) look like. We can generalize this to other categories. The coproduct of two groups G and H is the representing object of the functor $\operatorname{Grp}(G,-) \uplus \operatorname{Grp}(H,-)$ mapping each group $/$ to the disjoint union of the set of all group homomorphisms $G \rightarrow I$ and the set of all group homomorphisms $H \rightarrow I$. This is represented by the free product (confusingly).

$$
\operatorname{Grp}(G+H,-) \cong \operatorname{Grp}(G,-) \uplus \operatorname{Grp}(H,-)
$$

Diagrammatically,

Example: graph coloring

The functor n-Color mapping each graph to the set of all n-colorings is represented by the complete graph K_{n}.

$$
\operatorname{Graph}\left(-, K_{n}\right) \cong n \text {-Color- }
$$

Example: graph coloring

The functor n-Color mapping each graph to the set of all n-colorings is represented by the complete graph K_{n}.

$$
\operatorname{Graph}\left(-, K_{n}\right) \cong n \text {-Color- }
$$

- Under this isomorphism, the identity graph homomorphism $\operatorname{id}_{K_{n}} \in \operatorname{Graph}\left(K_{n}, K_{n}\right)$ corresponds to an n-coloring in n - $\operatorname{Color}\left(K_{n}\right)$. This is called the universal n-coloring.

Example: graph coloring

The functor n-Color mapping each graph to the set of all n-colorings is represented by the complete graph K_{n}.

$$
\operatorname{Graph}\left(-, K_{n}\right) \cong n \text {-Color- }
$$

- Under this isomorphism, the identity graph homomorphism $\operatorname{id}_{K_{n}} \in \operatorname{Graph}\left(K_{n}, K_{n}\right)$ corresponds to an n-coloring in n - $\operatorname{Color}\left(K_{n}\right)$. This is called the universal n-coloring.
- Every graph homomorphism $f: G \rightarrow K_{n}$ determines a unique n-coloring on G by taking the inverse image f^{-1} on the universal n-coloring.

Example: powerset

The powerset functor $P:$ Set \rightarrow Set is represented by the set of truth values.

$$
\operatorname{Set}(-, \mathbb{B}) \cong P-
$$

Example: powerset

The powerset functor $P:$ Set \rightarrow Set is represented by the set of truth values.

$$
\operatorname{Set}(-, \mathbb{B}) \cong P-
$$

- A proposition φ is just a function $\varphi: S \rightarrow \mathbb{B}$. Every proposition $\varphi: S \rightarrow \mathbb{B}$ uniquely determines a subset of S.

Example: powerset

The powerset functor $P:$ Set \rightarrow Set is represented by the set of truth values.

$$
\operatorname{Set}(-, \mathbb{B}) \cong P-
$$

- A proposition φ is just a function $\varphi: S \rightarrow \mathbb{B}$. Every proposition $\varphi: S \rightarrow \mathbb{B}$ uniquely determines a subset of S.
- Similarly, every subset of S is classified by a unique proposition $\varphi: S \rightarrow \mathbb{B}$.

Example: powerset

The powerset functor $P:$ Set \rightarrow Set is represented by the set of truth values.

$$
\operatorname{Set}(-, \mathbb{B}) \cong P-
$$

- A proposition φ is just a function $\varphi: S \rightarrow \mathbb{B}$. Every proposition $\varphi: S \rightarrow \mathbb{B}$ uniquely determines a subset of S.
- Similarly, every subset of S is classified by a unique proposition $\varphi: S \rightarrow \mathbb{B}$.
- The subset classified by $\varphi: S \rightarrow \mathbb{B}$ has a simple description:

$$
\{s \in S \mid \varphi(s)=t\}
$$

Suggested reading

圊 Tom Leinster.
Basic category theory.
Cambridge University Press, 2014.
E. Riehl.

Category theory in context.
Aurora: Dover modern math originals. Dover Publications, 2017.

