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1. INTRODUCTION

This personal study note closely follows [Joh02] and [Joh77]. The ultimate goal is to study Diaconescu’s theorem,
which is applicable in categorical logic.

2. BASIC THEORY

Definition 2.1. An (elementary) topos is a cartesian closed category equipped with a subobject classifier.

Theorem 2.2. Any Grothendieck topos E is an elementary topos.

Proof. By Giraud’s theorem, every Grothendieck topos is cartesian. To define exponentials, we use the Yoneda
lemma.

BA(U) ∼= E(C(– , U), BA)

Taking BA(U) := E(C(– , U) × A,B), we need to verify that E(C × A,B) ∼= E(C,BA) for all functors C. By the
density theorem, every functor is a colimit of representables. Thus,

E(C ×A,B) ∼= E(colimU C(– , U)×A,B) (1)
∼= E(colimU (C(– , U)×A), B) (2)
∼= lim

Uop
E(C(– , U)×A,B) (3)

∼= lim
Uop

E(C(– , U), BA) (4)

∼= E(C,BA) (5)
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If B is a J-sheaf and A is any functor, then since Sh(C, J) is an exponential ideal, BA is a sheaf. Finally, we use
the same thought experiment to show that E has a subobject classifier. Again, by the Yoneda lemma,

Ω(U) ∼= E(C(– , U),Ω)

A morphism C(– , U) → Ω is required to classify a subfunctor of C(– , U), or equivalently a sieve on U . Thus, we
take Ω(U) to be the set of all sieves on U . Note that Ω just defined is a J-sheaf because for any covering sieve R
on U and any morphism R → F the unique extension is the morphism C(– , U) → Ω corresponding to the element
R ∈ Ω(U) under the isomorphism.

Example 2.3. The category Setf of finite sets and functions between them is an elementary topos, but not a
Grothendieck topos since it is not cocomplete.

There are two notions of morphisms between toposes. The obvious one preserves all structures of a topos.

Definition 2.4. Let E and F be topoi. A logical functor F : E → F is a functor preserving finite limits,
exponentials, and the subobject classifier.

The other one is inspired by geometry.

Definition 2.5. Let E and F be topoi. A geometric morphism f : E → F is an adjoint pair of functors

E F
f∗

f∗
⊣

such that f∗ preserves finite limits. The functor f∗ is called the direct image functor and the functor f∗ is called
the inverse image functor. A geometric morphism is essential if the inverse image functor f∗ admits a left adjoint
f!.

Definition 2.6. Let f, g : E → F be a geometric morphisms. A geometric transformation f ⇒ g is a natural
transformation f∗ ⇒ g∗. This transposes to a unique natural transformation f∗ ⇒ g∗ under the adjunction.

Remark 2.7. Topoi, geometric morphisms, and geometric transformations assemble into a 2-category Topoi.

Example 2.8. Let f : C → D be a functor between small categories. The functor f∗ defined by precomposition
has a left and right adjoints. The right Kan extension is the direct image, while f∗ is the inverse image.

Psh(D) Psh(C)
f∗

Ranf

⊣

Thus, the assignment C 7→ Psh(C) can be extended to a 2-functor Cat → Topoi.

Lemma 2.9. Let C and D be small categories such that D is Cauchy-complete. Then every essential geometric
morphism f : Psh(C) → Psh(D) is induced by a functor C → D.

Proof. Let g : C → D be a functor. By Example 2.8, this functor induces an essential geometric morphism defined
by precomposition.

Conversely, let f be an essential geometric morphism. We want to show that f is induced by a functor g : C → D
by precomposition. Note that representable functors are tiny in the presheaf category and f∗ preserves colimits.
Owing to the following natural isomorphism,

Psh(D)(f!C(– , c), –) ∼= Psh(C)(C(– , c), f∗ –)

we see that Psh(D)(f!C(– , c), –) preserves sifted colimits. Thus, f!C(– , c) is perfectly presentable and therefore it
is a retract of a representable. Since D is Cauchy-complete, f!C(– , c) is representable. Thus, f! restricts along the
Yoneda embedding to a functor f0 : C → D. Indeed, f is induced by f0.

f∗(F )(c) ∼= Psh(C)(C(– , c), f∗F ) (6)
∼= Psh(D)(f!C(– , c), F ) (7)
∼= Psh(D)(D(– , f0c), F ) (8)
∼= Ff0c (9)
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Lemma 2.10. In a topos, every monomorphism is an equalizer.

Proof. Since t : 1 → Ω is a split monomorphism, it is the equalizer of idΩ and Ω
!Ω−→ 1

t−→ Ω. Since every
monomorphism is a pullback against t in a topos, it follows that every monomorphism is an equalizer.

Corollary 2.11. Every topos is balanced.

Names offer a convenient way to reason about subobjects.

Lemma 2.12. Let f : C → A be a morphism. If ν : A → ΩB names a relation R from B to A, then νf names the
relation from B to C obtained by pulling back R along id× f .

Proof. It suffices to show that νf names the same subobject classified by χR(id × f), i.e., that the left diagram
commutes, where η is the unit of the exponential adjunction. This is equivalent, by unfolding the definition of ν,
to the right diagram.

C (B × C)B

A ΩB

f

ηC

(χR(id×f))B

ν

C (B × C)B

A (B ×A)B ΩB

f

ηC

(χR(id×f))B

ηA (χR)B

(id×f)B

The trapezoid commutes by naturality and the triangle commutes by functoriality.

2.1. Equivalence relations

Definition 2.13. Let (a, b) : R ↣ A×A be a relation in a category with finite limits.

1. (a, b) is reflexive if the diagonal relation ∆ : A → A×A factors through (a, b), i.e., there is a map ρ : A → R
such that aρ = bρ = idA.

2. (a, b) is symmetric if the twisted relation (π2, π1)(a, b) : R → A×A factors through (a, b), i.e., there is a map
σ : R → R such that aσ = b and bσ = a.

3. (a, b) is transitive if the R-related triple relation (ap, bq) : R ×A R → A× A factors through (a, b), i.e., there
is a map τ : R×A R → R such that aτ = ap and bτ = bq, where p and q are given in the following pullback.

R×A R R

R A
b

ap

q

⌟

4. (a, b) is an equivalence relation if it is reflexive, symmetric, and transitive.

Definition 2.14. An equivalence relation is effective if it arises as the kernel pair of some morphism.

Theorem 2.15. In a topos, equivalence relations are effective.

Proof. Let ν be the name of the given equivalence relation e = (a, b) : R ↣ A×A. We claim that (a, b) is a kernel
pair of ν, i.e., the left diagram is a pullback. Let p and q be given as in the right diagram.

R A

A ΩA

ν

ν

a

b R×A R R

R A
b

a

q

p

⌟
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To show that the diagram commutes, it suffices to show that νa and νb name the same subobject. To this end, it
suffices to show that the following two diagrams are pullbacks.

R×A R R

A×R A×A

p

e

id×a

(ap,q)

R×A R R

A×R A×A

τ

e

id×b

(ap,q)

Let (s1, s2) : E → A×R and t : E → R with et = (s1, as2). Since ap and q are jointly monomorphic, it suffices to
show that there is a factorization. Indeed, this factorization is given by the left pullback.

E

R×A R R

R A

q

a

b

p

s2

t

π

⌟

E

R×A R R

A×R A×A

p

e

id×a

(ap,q)
(s1,s2)

t
π

In the second diagram, suppose that (s1, s2) : E → A×R and t : E → R with et = (s1, bs2). Then a factorization
is given by the left pullback.

E

R×A R R

R A

p

q

a

b

ρs1

t
π

E

R×A R R

A×R A×A

(ap,q)

τ

e

id×b

(s1,s2)

t
π

It remains to show that the original square is a pullback. Let u : E → A and v : E → A with νu = νv, i.e., the
pullbacks of e along id×u and id× v are the same. Then, pulling both sides back by (u, id) : E → A×E yields the
same subobject of E. But the pullback of e along (u, u) is the maximal subobject of E because the left diagram is
a pullback. This implies that the pullback of e along (u, v) is also the maximal subobject of E. Thus, (u, v) factors
through e as indicated in the middle diagram. This yields the required factorization.

E A R

E A×A

e

(u,u)

u ρ

∆

⌟
Q′ Q R

E A× E A×A

e

id×v

⌟

(u,id)

∼=

⌟

π

E

R A

A ΩA

a

ν

b

ν
u

v

π

Since a and b are jointly monomorphic, it follows that the factorization is unique.

Lemma 2.16. Let { } : A → ΩA be the name of the diagonal equivalence relation ∆ : A ↣ A × A. { } is also a
mono.

Proof. By Theorem 2.15, the following diagram is a pullback.

A A

A ΩA
{ }

{ }

⌟
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Thus, { } is a monomorphism.

2.2. Powerobjects and pullback functors

For any object A of a topos, we have the inclusion relation classified by the evaluation morphism (i.e., the counit
of the exponentiation adjunction). And for any morphism f : B → A, we obtain a relation R as follows.

∈A 1

A× ΩA Ω

t

ev

⌟

R ∈A 1

B × ΩA A× ΩA Ω

t

ev

⌟

f×id

⌟

Example 2.17. In Set, the relation R is given by b R S ⇐⇒ f(b) ∈ S. Pulling this relation back along id× { }
yields a relation from B to A such that b G a ⇐⇒ f(b) ∈ { a }. That is, G is the graph of the given function f .

G R ∈A

B ×A B × ΩA A× ΩA
f×id

⌟

id×{ }

⌟

Lemma 2.18. Let E be a topos. The assignment A 7→ ΩA can be extended to a faithful functor P : Eop → E.

Proof. Given f : A → B, let Pf : ΩB → ΩA be the exponential transpose of the following composite. Thus, it
follows, by uniqueness, that this assignment is functorial.

A× ΩB f×id−−−→ B × ΩB ev−→ Ω

To show faithfulness, suppose that Pf = Pg. Then Pf { } = Pg { }. These morphisms name the relations (f, id)
and (g, id), respectively. Since they are the same relation, it follows that f = g.

Lemma 2.19. In any topos, the powerobject functor P : Eop → E admits a left adjoint.

Proof. The left adjoint is in fact the same functor in the opposite category P op : E → Eop.

ΩX → Y (in Eop)
Y → ΩX (in E)
X × Y → Ω

Y ×X → Ω

X → ΩY

Example 2.20. In Set, the powerobject functor constructed in Lemma 2.18 is the usual contravariant powerset
functor.

When f : A ↣ B is a monomorphism, then the composite ∈A↣ A×ΩA
f×id
�−−→ B×ΩA is also a monomorphism.

Thus, it has a unique classifying map (∃f)† in a topos.

Definition 2.21. Let f : A ↣ B be a monomorphism in a topos, then we define ∃f : ΩA → ΩB to be the
exponential transpose of the classifying map (∃f)†.

Example 2.22. Given an injective function f : A → B in Set, the composite ∈A↣ A × ΩA
f×id
�−−→ B × ΩA is

the relation f(a) R S ⇐⇒ a ∈A S. This is classified by the truth-valued function (∃f)† : B × ΩA → Ω that
maps (b, S) to t if and only if ∃a ∈ A. f(a) = b ∧ a ∈ S. The exponential transpose maps S to the subset
{ b ∈ B | ∃a ∈ A. f(a) = b ∧ a ∈ S }.
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Lemma 2.23 (Beck-Chevalley condition). If the left diagram is a pullback diagram in a topos, then the right
diagram commutes.

A C

B D

g h

f

k

⌟

ΩC ΩA

ΩD ΩB

Pf

Pk

∃h ∃g

Proof. It suffices to show that the two composites ∃gPf and Pk∃h name the same subobject. Since (–) × ΩC

preserves pullbacks, we have the following pullback diagram.

E ∈C

A× ΩC C × ΩC

B × ΩC D × ΩC

g×id

f×id

h×id

k×id

⌟

⌟

Pf names E as a subobject of A×ΩC , so ∃gPf names the composite E ↣ A×ΩC
g×id
�−−→ B ×ΩC . And ∃h names

∈C as a subobject of D × ΩC whose pullback along k × id is E. Thus, Pk∃h also names E as a subobject of
B × ΩC .

Corollary 2.24. If f : A → B is a monomorphism, then Pf∃f = idΩA .

Proof. Since the left diagram is a pullback, by Beck-Chevalley condition, the right diagram commutes.

A A

A B
f

f

⌟

ΩA ΩA

ΩB ΩA
Pf

∃f

Theorem 2.25. The powerobject functor P : Eop → E of any topos is monadic.

Proof. Since P admits a left adjoint, by the crude monadicity theorem, it suffices to show that P reflects isomor-
phisms and that Eop has reflexive coequalizer and P preserves them.

Since E is finitely complete, Eop is finitely cocomplete. Thus, Eop trivially has reflexive coequalizer (because it
has all coequalizers). Note that the property of being balanced is self dual, so it suffices to show that P reflects
monomorphisms and epimorphisms. This follows immediately from the fact that P is faithful.

It remains to show that P preserves reflexive coequalizers. A reflective coequalizer in Eop is a coreflective
equalizer in E , which can be expressed as the pullback on the left. By Beck-Chevalley condition, the right diagram
commutes.

C B

B A

h

h f

g

⌟

ΩB ΩC

ΩA ΩB

∃f ∃h

Ph

Pg
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Since h and g are monomorphisms, Ph∃h = idΩC and Pg∃g = idΩB . Thus, the following diagram is a split
coequalizer (therefore, a reflexive coequalizer) in E .

ΩA ΩB ΩC
Pg

Pf

Ph

∃h∃f

Corollary 2.26. Every topos E is finitely cocomplete.

Proof. Since the powerobject functor P : Eop → E is monadic, it creates limits. Thus, Eop has finite limits. But
finite limits in Eop are finite colimits in E .

Definition 2.27. Let C be a cartesian category and A be an object. The powerobject PA of A consists of a
universal inclusion relation ∈A↣ A×PA such that for any relation R ↣ A×B, there is a unique comparison map
id× f : A×B → A× PA whose pullback against ∈A is the relation R.

The abuse of notation in Definition 2.27 is justified since, in a topos, PA is a powerobject, where P is the
powerobject functor. In fact, topoi can be equivalently reformulated as cartesian categories in which every object
has a powerobject. One direction is clear: every topos has powerobjects given by the powerobject functor.

Lemma 2.28. Let C be a cartesian category with powerobjects. The assignment A 7→ PA can be extended to a
functor P : Cop → C.

Proof. Let f : A → B be a morphism. Take the pullback indicated on the left. Then let Pf be given by the
universal property of powerobjects as indicated on the right.

C ∈B

A× PB B × PB
f×id

m

⌟
C ∈A

A× PB A× PA
id×Pf

m

⌟

Uniqueness implies functoriality.

Remark 2.29. In a topos, the functor constructed in Lemma 2.28 is just the usual powerobject functor.

Remark 2.30. The proof of Theorem 2.25 can be adapted to show that the functor in Lemma 2.28 is monadic.
Similarly, we can show that every cartesian category with powerobjects is balanced, providing the analogue of
Corollary 2.11.

Lemma 2.31. Let F : E → F be a powerobject-preserving functor between cartesian categories with powerobjects.
F admits a left adjoint iff it admits a right adjoint.

Proof. Suppose that G ⊣ F , then F op ⊣ Gop. And since F preserves powerobjects, the following diagram commutes
up to isomorphism in both directions. We claim that P ∗

EGPF is left adjoint to F op.

Eop Fop

E F

PE PF

F

F op

G

P∗
F

Gop

P∗
E

⊣

⊣

⊣

⊣

P ∗
EGPFf → e in Eop

GPFf → PEe in E
PFf → FPEe in F

PFf → PFF
ope in F

P ∗
FPFf → F ope in Fop

f → F ope in Fop

Note that the counit ϵf of the adjunction P ∗
F ⊣ PF is a coequalizer of a pair of morphisms (so it is epimorphic)

because PF is monadic. But since PF is faithful, it is also monomorphic. Thus, it follows that ϵf is an isomorphism.
Since F op admits a left adjoint, F admits a right adjoint. The converse follows analogously.
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Notation 2.32. Let C be a category with pullbacks and f : A → B be a morphism, we write f∗ for the functor
C/B → C/A obtained by pulling back along f . The action on morphisms is the canonical one given by the universal
property of pullbacks.

C ′ C

A B
f

gf∗g

⌟

We write B∗ : C ∼= C/1 → C/B for the pullback functor along the unique map B → 1.

Lemma 2.33. Let f : A → B be a morphism in a category C with pullbacks. The pullback functor f∗ : C/B → C/A
admits a faithful left adjoint Σf : C/A → C/B.

Proof. Consider the forgetful functor p : C/A ∼= (C/B)/f → C/B, which is clearly faithful. Indeed, the forgetful
functor is given by the assignment h 7→ fh on objects. Then a morphism p(h) → k yields a cone in C as in the left
diagram. This corresponds to a unique morphism h → f∗(k), yielding the required natural bijection.

E

D C

A B

h

f

kf∗(k)

⌟

p(h) → k

h → f∗(k)

Thus, we take Σf := p.

Lemma 2.34. Let A be an object of a cartesian category C with a powerobject PA. Then, for any object B of C,
the object B∗(PA), equipped with the relation B∗(∈A), is a powerobject for B∗(A) in C/B.

Proof. Given any g : C → B, the left diagram is a pullback. Thus, the right diagram implies that ΣB(B
∗(A)×g) ∼=

A× C.

A× C A×B

C Bg

B∗(A)

id×g

⌟

ΣB(B
∗(A)× g) A×B A

C B 1

B∗(A)

⌟

g

⌟

Note that ΣB preserves monomorphisms (because it creates connected limits). Thus, for any f ↣ B∗(A) × g, we
have a relation ΣBf ↣ ΣB(B

∗(A) × g) and the left diagram. Transposing across the adjunction ΣB ⊣ B∗ yields
the desired pullback.

ΣBf ∈A

ΣB(B
∗(A)× g) A× PA

⌟

f B∗(∈A)

B∗(A)× g B∗(A)×B∗(PA)

⌟

Example 2.35. In a cartesian category with powerobjects, the powerobject for the terminal object 1 is a subobject
classifier. Thus, we can define ∧ : Ω × Ω → Ω to be the classifying map for the subobject (t, t) : Ω ↣ Ω × Ω.
Now, let f, f ′ : A ⇒ Ω be a pair of maps classifying B ↣ A and C ↣ A, respectively. We define B ∩ C to be the
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subobject classified by the composite ∧(f, f ′). Consider the subobject π∗
12(∈A)∩ π∗

13(∈A) of A×PA×PA. By the
universal property of powerobjects, there is a unique name PA× PA → PA for this subobject.

B ∩ C 1

A Ω× Ω Ω

t

∧(f,f ′)

⌟

π∗
12(∈A) ∩ π∗

13(∈A) ∈A

A× PA× PA A× PA
id×∧A

⌟

In Set, ∧A is set intersection. This intuition leads us to consider the following equalizer as the subset relation.

⊆A PA× PA PA
π1

∧A

R C

A×B

Now, suppose that we have a subobject R ↣ C and a relation C ↣ A× B. Then the composite yields a relation
R ↣ A×B. Let νR be the name of R ↣ A×B and νC be the name of C ↣ A×B. Then νR = ∧A(νR, νC).

Theorem 2.36. If C is a cartesian category with powerobjects and B is an object of C, then C/B is also a cartesian
category with powerobjects.

Proof. TODO: This is my best attempt at deciphering Johnstone’s proof. Parts of the proof have not been
deciphered.

C/B is a cartesian category: the terminal object is idB and its coequalizers are created by ΣB . Let f : A → B
be an arbitrary object in C/B, we need to construct a powerobject for it. In Set, we can view f as an B-indexed
family whose total space is A. Then we expect its powerobject k to be an B-indexed family of subsets of fibers of
f .

Q ⊆A

PA×B PA× PA

(h,k)

id×Pf{ }

⌟

For any object g : C → B in C/B, a subobject of f×g is a subobject of A×BC in C, which corresponds uniquely to
a pair of morphisms R ↣ A×C and R → B. Since ∆ is monomorphic, the latter is unique. Thus, every subobject
of A ×B C corresponds to a unique subobject of A × C. Let νR be the name of the relation R ↣ A × C. Since

Pf { } g names A×BC
(p1,p2)
�−−−→ A×C, we have νR = ∧A(νR, Pf { } g). This yields a unique cone over the pullback,

corresponding to a unique morphism l : C → Q such that kl = g, i.e., a morphism g → k in C/B.

R

A×B C B

A× C B ×B

∆(p1,p2)

⌟

C

Q ⊆A

PA×B PA× PA
id×Pf{ }

(h,k)

l

(ν,g)

⌟

This establishes a bijection between subobjects of f × g in C/B and morphisms g → k. We take ∈f↣ f × k to be
the one that corresponds to the identity k → k. Then we can readily see that ∈f↣ f ×k has the required universal
property through the bijection constructed above.

Corollary 2.37. For any object B in a cartesian category C with powerobjects, B∗ admits a right adjoint ΠB and
C is cartesian closed.
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Proof. Since B∗ is a powerobject-preserving functor admitting a left adjoint, it has a right adjoint by Lemma 2.31.
Note that the domain of B∗(A) is the product B×A. Thus, the composite ΣBB

∗ is the product functor. Then the
composite ΠBB

∗ is the required right adjoint.

B ×A A

B 1

B∗(A)

⌟

C C/B C
B∗ ΣB

B∗ΠB

⊣ ⊣

Corollary 2.38. Every cartesian category with powerobjects is a topos.

Corollary 2.39. If E is a topos and B is any object of E, then E/B is also a topos.

2.3. Injective objects

Definition 2.40. An object E is injective if, for any monomorphism m : A ↣ B, every morphism f : A → E has
a (not necessarily unique) extension f ′ : B → E.

A B

E

m

f f ′

Definition 2.41. A category has enough injectives if, for any object A, there is an injective object E and a
monomorphism A ↣ E.

2.4. Partial maps and their classifiers

Definition 2.42. A partial map f : A ⇁ B in a cartesian category C is a diagram indicated on the left. Partial
maps can be composed as indicated on the right.

A′ B

A

m

f

A′ ×B B′ B′ C

A′ B

A

f

g

⌟

Up to isomorphism, composition of partial maps is associative and unital. By identifying isomorphic relations,
this yields a category C⊥ whose objects are those of C and whose morphisms are partial maps of C. There is a
functor p : C → C⊥ that is identity on object and sends f : A → B to the partial map (id, f) : A ⇁ B.

Definition 2.43. A cartesian category C has representable partial maps if p admits a right adjoint.

Theorem 2.44. Every topos has representable partial maps.

Proof. TODO:
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3. INTERNAL CATEGORIES

Category theory is an essentially algebraic theory. Thus, it can be internalized in any category with finite limits.
For the time being, let us assume that E has finite limits.

Definition 3.1. An internal category of E consists of the following data.

• An object of objects Co and an object of morphisms Cm.

• A domain and a codomain morphism dom, cod : Cm → Co, an identity i : Co → Cm, and a composition
c : Cc → Cm, where Cc

1 is the following pullback.

Cc Cm

Cm C0dom

codπ1

π2

⌟

These data are subject to the following requirements.

• dom i = cod i = idCo
.

• dom c = domπ2 and cod c = codπ1.

• c(id× i) = c(i× id) = id and c(id× c) = c(c× id).

Here, id × i and id × c are given by the following left and right diagrams, respectively, where C3 is the object of
composable triples.

Cm

Cc Cm

Cm Co

cod

dom

⌟
id

i dom

id×i

C3

Cc Cm

Cm Co

cod

dom

⌟
p1

cp23

id×c

The other two morphisms are obtained in the same fashion.

TODO: Construct the object of composable triples.

Definition 3.2. An internal functor F : C → D consists of an action on objects fo : Co → Do and an action on
morphisms fm : Cm → Dm. These data are subject to the following requirements.

• domD fm = fo domC and codD fm = fo codC.

• fmiC = iDfo and fmcC = cD(fm × fm).

Definition 3.3. Let F : C → D be an internal functor. F is a discrete opfibration if the left diagram is a pullback.
It is a discrete fibration if the right diagram is a pullback.

Cm Co

Dm Do

fofm

domD

domC

⌟

Cm Co

Dm Do

fofm

codD

codC

⌟

1We may think of Cc as the object of composable pairs of morphisms.
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Lemma 3.4. Let f : C → D and g : D → E be internal functors such that g is a discrete opfibration (fibration).
Then f is a discrete opfibration (fibration) iff gf is.

Proof. Immediate from the pasting lemma of pullbacks.

Example 3.5. Let C and D be two internal categories of Set. Consider a discrete fibration F : C → D. Let A be
an object of C (A ∈ Co) and g : B → F (A) be a morphism in D. Then the universal property of pullbacks provides
a unique lift g̃ : B̃ → A of g in C such that F (g̃) = g.

1

Cm Co

Dm Do

fofm

codD

codC

⌟

Definition 3.6. Let F,G : C ⇒ D be two internal functors. An internal natural transformation F ⇒ G consists of
an assignment α : Co → Dm subject to the following requirements.

• domD α = fo and codD α = go.

• cD(gm, α domC) = cD(α codC, fm).

Remark 3.7. Let E be a finitely complete category. Internal categories, internal functors, and internal natural
transformations assemble into a 2-category cat(E). In fact, internal categories and internal functors assemble into
a 1-category.

Definition 3.8. Let C ∈ cat(E).

1. C is a poset if dom and cod are jointly monomorphic.

2. C is discrete if i is an isomorphism.

3. The opposite category Cop is obtained by exchanging the roles of dom and cod and composing c with the twist
map.

In classical category theory, we are comfortable with set-valued functors from a small category. We can not
construct such functors as internal functors because the collection of all sets is not a set (neither is the collection of
all functions). But, we can compress the data of a set-valued functor into its category of elements via Grothendieck
construction.

TODO: Fix the definition and provide an example.

Definition 3.9. Let C ∈ cat(E). An internal diagram F on C consists of the following data.

• An object Fo
γo−→ Co of E/Co.

• A morphism e : Fm → Fo, where Fm is given by the following pullback.

Fm Fo

Cm Codom

γo

d

γm

⌟

These data are subject to the following conditions.

• γoe = cod γm.

• e(i× id) = idFo
and e(c× id) = e(e× id).
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A morphism of internal diagrams F → G is a morphism Fo → Go in the category E/Co. We write EC for the
category of internal diagrams on C. An internal diagram on Cop is called an internal presheaf.

Remark 3.10 (Grothendieck construction). Given an internal diagram F on C, we can construct an internal
category F such that γo and γm in the pullback diagram of Definition 3.9 form a discrete opfibration F → C.
Conversely, given a discrete opfibration G → C, we readily have an internal diagram on C. Passing this internal
diagram through the Grothendieck construction, we obtain the discrete opfibration that we started with. Thus, we
have the following equivalence of categories, where doFib(C) is the full subcategory of cat(E)/C spanned by discrete
opfibrations.

EC ≃ doFib(C)

3.1. Colimits in internal categories

Although what we are about to develop can be done in a more general category than a topos, we are going to
assume that the ambient category E is a topos from now on.

Definition 3.11. Define the connected component functor π0 : cat(E) → E by the following coequalizer.

Cm Co π0C
dom

cod

Example 3.12. Let C be a small category in the classical sense. Then the functor π0 : Cat → Set maps C to the set
in which objects of C (elements of Co) connected by a morphism are identified. This is precisely the usual notion
of the connected component of a small category.

Definition 3.13. Let C ∈ cat(E). Define the colimit functor colimC : EC → E by colimC F = π0F, where F is the
internal category obtained by passing the internal diagram F through the Grothendieck construction.

Example 3.14. Let C be a small category. Given a set valued diagram D : C → Set, the Grothendieck construction
yields the category of elements

∫
D whose connected component is precisely the representing object for the cocone

functor.

Every object of E can be equipped with the structure of an internal category: equip it with the structure of a
discrete category. Indeed, this assignment is functorial. We denote this functor by ∆ : E → cat(E).

Lemma 3.15. The functor π0 : cat(E) → E is left adjoint to ∆.

Proof. Every morphism π0C → D in E corresponds to a unique morphism Co
g−→ D such that g dom = g cod. But

this corresponds to a unique internal functor from C to the discrete category ∆D.

Cm Co

D D

dom

id

gg dom

Cm Co

D D

cod

id

gg dom

Lemma 3.16. colimC : EC → E admits a right adjoint.

Proof. Consider the following adjoints.

cat(E)/C cat(E) E
ΣC π0

∆C∗

⊣⊣

Since C∗ sends each internal category D to the discrete opfibration C × D
π1−→ C, we may restrict the codomain of

C∗ to discrete opfibrations. Then we may apply the equivalence EC ≃ doFib(C).

doFib(C) cat(E) E
ΣC π0

∆C∗

⊣⊣ EC cat(E) E
ΣC π0

∆C∗

⊣⊣

But in this case, ΣC is just the Grothendieck construction. Thus, π0ΣC is the colimit functor and C∗∆ is the desired
right adjoint.
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Example 3.17. In Set, the functor ∆ : Set → Cat sends each set D to the discrete category D containing that set.
Then C∗ sends this discrete category to the discrete opfibration C × D

π1−→ C, which corresponds to the constant
diagram mapping each object of C to the set D. Indeed, C× D is the category of elements of this diagram and π1

is the associated forgetful functor.

Remark 3.18. The external and the internal notions of cocompleteness are not the same. By Lemma 3.16, Setf
is internally cocomplete. But, Setf is not a cocomplete category.

3.2. Filtered categories

Recall that a small category C is filtered if the following conditions hold:

• C is nonempty.

• For any pair of objects in C, there is a pair of morphisms with a common codomain.

• For any parallel pair of morphisms, there is a coequalizing cocone.

To translate this definition into a topos, we define the following objects. Let C ∈ cat(E) in the following
definitions.

Definition 3.19. The object of morphisms with common codomain PC, the object of parallel pairs RC, and the
object of coequalizing cocones TC are respectively defined by the following pullbacks.

PC Cm

Cm Cocod

codp1

p2

⌟

RC Cm

Cm Co × Co
(dom,cod)

(dom,cod)

⌟

TC Cc

Cc Cm × Cm
(π1,c)

(π1,c)

⌟

Definition 3.20. An internal category C is filtered if the morphisms Co → 1, PC → Co × Co, and TC → RC are
epimorphic.

4. THE 2-CATEGORY Topoi
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