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1. Relations

Definition 1.1. An n-ary relation R on a set S can be encoded as a subset:

R ⊆ Sn

We write R(a, . . . , z) whenever (a, . . . , z) ∈ R. Binary relations will be the main
focus of this class. For these relations, it is customary to use infix notations. That
is, we write aRb instead of R(a, b).

Example 1.2. The substring relation ⊑ on {a, b}∗ is the subset

{(ε, ε), (ε, a), . . . , (a, a), (a, ab), (a, ba), . . .}

Example 1.3. The divisibility relation | on Z is defined by

a | b ⇐⇒ ∃c. b = ac

It is the subset
{(a, b) ∈ Z× Z | ∃c. b = ac}

Example 1.4. The adjacency relation on a simple graph: two vertices u are v are
adjacent if they are connected by an edge. It is the subset

{(u, v) ∈ V × V | (u, v) ∈ E ∨ (v, u) ∈ E}

Definition 1.5 (Reflexivity). A binary relation R on a set S is reflexive if every
element of S is related to itself by R.

∀a. aRa

Example 1.6. The divisibility relation on Z is reflexive because every integer divides
into itself once.

Definition 1.7 (Symmetry). A binary relation R on a set S is symmetric if when-
ever a is related to b by R, then b is also related to a by R.

∀a.∀b. (aRb ⇒ bRa)
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Example 1.8. The adjacency relation on a simple graph is symmetric. If a vertex
u is adjacent to another vertex v, then v is also adjacent to u.

Definition 1.9 (Transitivity). A binary relation R on a set S is transitive if for
any three elements a, b, c of S, if aRb and bRc then aRc.

∀a.∀b.∀c. (aRb ∧ bRc ⇒ aRc)

Example 1.10. The substring relation on {a, b}∗ is transitive. In fact, it is also
reflexive, but it is not symmetric.

Definition 1.11 (Equivalence Relation). A binary relation R on a set S is an
equivalence relation if it is

(i) reflexive,
(ii) symmetric, and
(iii) transitive.

Proposition 1.12. The congruence-modulo-2 relation on Z is defined by

a ≡ b mod 2 ⇐⇒ 2 | (a− b)

It is an equivalence relation.

Proof. (Reflexivity). Let a be any integer. We need to prove that a ≡ a mod 2.
By definition, this is equivalent to proving 2 | (a − a), or equivalently, 2 | 0. By
definition again, this is equivalent to ∃c. 0 = 2c. Setting c := 0 yields 0 = 2 · 0 = 0
as desired.

(Symmetry). Let a, b be any integers. Assume that a ≡ b mod 2. By definition,
this hypothesis asserts that there’s an integer c so that a − b = 2c. We need to
prove ∃k. b − a = 2k. Setting k := −c yields b − a = −(a − b) = −2c = 2(−c) as
desired.

(Transitivity). Let a, b, c be any integers. Assume that a ≡ b mod 2 and that
b ≡ c mod 2. By definition, these two hypotheses assert that there are integers
n,m so that a − b = 2n and b − c = 2m. We need to show that ∃k. a − c = 2k.
Setting k := n+m yields 2(n+m) = 2n+2m = (a−b)+(b−c) = a−b+b−c = a−c
as desired. □

Definition 1.13 (Antisymmetry). A binary relation R on a set S is antisymmetric
if for any two elements a, b of S, if aRb and bRa then a = b.

Example 1.14. The subset relation ⊆ on P(S) is antisymmetric. Recall that two
sets A and B are equal precisely when A ⊆ B and B ⊆ A.

Remark 1.15. Antisymmetry does not imply asymmetry. For example, the indis-
crete relation I on the singleton set {a}, defined as

I = {(a, a)}
is both antisymmetric and symmetric.

Definition 1.16 (Preorder). A binary relation is a preorder if it is
(i) reflexive, and
(ii) transitive.

Definition 1.17 (Partial Order). A partial order is a preorder that additionally
satisfies antisymmetry.
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Proposition 1.18. The divisibility relation on N is a partial order.

Proof. (Reflexivity): Exercise.
(Transitivity): Exercise. Hint: See Proposition 1.12.
(Antisymmetry): Let a, b be natural numbers so that a | b and b | a. These

hypotheses assert that there are natural numbers n,m so that b = an and that
a = bm. Thus, b = (bm)n. If b = 0, then since a = bm = 0m = 0, a = b as desired.
However, if b ̸= 0, then mn = 1. Since n,m are natural numbers, n = m = 1.
Thus, a = b as desired. □

Remark 1.19. Proposition 1.18 does not hold if we replace N with Z because 2 | −2
and −2 | 2, but 2 ̸= −2. Although the divisibility relation on Z is not a partial
order, it is a preorder.

2. Functions

Intuitively, a function is a rule for assigning each element of a set to a unique
element of another set. In set theory, we can encode functions as special binary
relations.

Definition 2.1. A binary relation R ⊆ A×B is (left) total if

∀a ∈ A.∃b ∈ B. (a, b) ∈ R

Definition 2.2. A binary relation R ⊆ A×B is functional if

∀a ∈ A.∀b ∈ B.∀c ∈ B. ((a, b) ∈ R ∧ (a, c) ∈ R ⇒ b = c)

Definition 2.3. A function f from a set A to another set B, denoted f : A → B
is a binary relation

f ⊆ A×B

that is total and functional. We write f(a) = b for (a, b) ∈ f . Writing the two
conditions in this notation is perhaps more illuminating:

(i) Totality:
∀a ∈ A.∃b ∈ B. f(a) = b

(ii) Functionality:

∀a ∈ A.∀b ∈ B.∀c ∈ B. (f(a) = b ∧ f(a) = c ⇒ b = c)

The set A is called the domain of f , and the set B is called the codomain of f .

Theorem 2.4 (Functional Extensionality). Two functions f, g : A → B are equal
if and only if f(a) = g(a) for all a ∈ A.

Proof. The “only if” direction is obvious. For the “if” direction, assume that f(a) =
g(a) for all a ∈ A. To prove that f = g, it suffices to prove f ⊆ g and g ⊆ f .
Now, suppose that (a, b) ∈ f . Since f(a) = g(a), (a, g(a)) ∈ f . By functionality,
g(a) = b. Thus, (a, b) ∈ g, proving that f ⊆ g. The proof of g ⊆ f is completely
analogous. □

Definition 2.5. Given two functions f : A → B and g : B → C, the composition
g ◦ f : A → C (reads “g after f ”) is a function defined by

(g ◦ f)(x) = g(f(x))

Note that g ◦ f is defined only if the codomain of f and the domain of g are the
same.
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Lemma 2.6. Composition is associative, i.e., (f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof. Exercise. Hint: Use functional extensionality. □

Definition 2.7. For any set S, there is a special function idS , called the identity
function on S, defined by

idS(s) = s

Lemma 2.8. For any function f : A → B, idB ◦ f = f and f ◦ idA = f .

Proof. Exercise. □

Lemmas 2.6 and 2.8 together mean that sets and functions between them assem-
ble into a category. Category theory is an interesting subject that we will sadly not
discuss in this class.

Definition 2.9. A function f : A → B is injective, denoted f : A ↣ B, if

∀a ∈ A.∀a′ ∈ A. (f(a) = f(a′) ⇒ a = a′)

Definition 2.10. A function f : A → B is surjective, denoted f : A ↠ B, if

∀b ∈ B.∃a ∈ A. f(a) = b

Theorem 2.11 (Cantor’s Theorem). For any set S, there is no surjective functions
f : S ↠ P(S).

Proof. Suppose that f : S ↠ P(S). Consider the subset {s ∈ S | s /∈ f(s)}. Since
f is surjective, there must be some s′ ∈ S so that f(s′) = {s ∈ S | s /∈ f(s)}.
If s′ ∈ f(s′), then by definition, s′ /∈ f(s′), yielding a contradiction. Similarly, if
s′ /∈ f(s′), then by definition, s′ ∈ f(s′). This is a contradiction. □

Definition 2.12. A function f : A → B is bijective if it is injective and surjective.

Definition 2.13. A function f : A → B is invertible if there is a function g : B → A
such that

(i) f ◦ g = idB , and
(ii) g ◦ f = idA.

g is called the inverse of f . When f is invertible, we write f−1 for its inverse.

Theorem 2.14. A function f : A → B is invertible if and only if f is bijective.

Proof. The “only if” direction: assume that f is invertible. Then there is a function
f−1 : B → A such that f ◦ f−1 = idB and f−1 ◦ f = idA.

(Injectivity): Let a, a′ ∈ A be given. Assume that f(a) = f(a′). Then idA(a) =
f−1(f(a)) = f−1(f(a′)) = idA(a

′). Thus, a = a′.
(Surjectivity): Let b ∈ B be given. We need to show that there is some a ∈ A

so that f(a) = b. Choose a := f−1(b), then f(f−1(b)) = idB(b) = b.
The “if” direction: assume that f is bijective. We need to show that f is in-

vertible. To this end, we construct a relation f−1 ⊆ B × A: for each a ∈ A so
that f(a) = b, we take (b, a) ∈ f−1. To show that f−1 is a function, we must
show that it is total and functional. Totality follows from surjectivity of f and
functionality follows from injectivity of f . The details are left to the reader as an
exercise. Finally, it remains to check that f−1 defines an inverse of f . By functional
extensionality, it suffices to check:

(i) (f ◦ f−1)(b) = idB(b) = b for all b ∈ B, and
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(ii) (f−1 ◦ f)(a) = idA(a) = a for all a ∈ A.
These two equations follow from the construction of f−1. The remaining details
are left as an exercise. □

3. Countable Sets and Uncountable Sets

Definition 3.1. A set S is countable if there is a bijection f : S → N.

Theorem 3.2. NN is uncountable.

Proof. Suppose that NN is countable, i.e., N ∼= NN. A possible interpretation of this
hypothesis is that every function f : N → N can be given a unique natural-number
code. That is, there are functions

decode : N → NN(3.3)

encode : NN → N(3.4)

that are mutual inverses. Consider the function

k : N → N(3.5)
k : n 7→ decode(n)(n) + 1(3.6)

Given a code n, the function k decodes n, yielding a function N → N, then evaluates
that function at n, and finally adds 1 to the result.

The function k has a unique code given by encode(k). Now, let’s evaluate k at
its own code:

k(encode(k)) = decode(encode(k))(encode(k)) + 1(3.7)
= k(encode(k)) + 1(3.8)

This is a contradiction. □

Theorem 3.2 tells us that some functions f : N → N are uncomputable: there are
only countably many programs that one can write, but there are uncountably many
endofunctions on N. Thus, some of those functions do not have a corresponding
program that computes it.
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