FUNCTIONS AND RELATIONS

FRANK TSAI

Contents

1. Relations 1
2. Functions 3
3. Countable Sets and Uncountable Sets 5
4. Relations

Definition 1.1. An n-ary relation R on a set S can be encoded as a subset:

$$
R \subseteq S^{n}
$$

We write $R(a, \ldots, z)$ whenever $(a, \ldots, z) \in R$. Binary relations will be the main focus of this class. For these relations, it is customary to use infix notations. That is, we write $a R b$ instead of $R(a, b)$.

Example 1.2. The substring relation \sqsubseteq on $\{a, b\}^{*}$ is the subset

$$
\{(\varepsilon, \varepsilon),(\varepsilon, a), \ldots,(a, a),(a, a b),(a, b a), \ldots\}
$$

Example 1.3. The divisibility relation \mid on \mathbb{Z} is defined by

$$
a \mid b \Longleftrightarrow \exists c . b=a c
$$

It is the subset

$$
\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists c . b=a c\}
$$

Example 1.4. The adjacency relation on a simple graph: two vertices u are v are adjacent if they are connected by an edge. It is the subset

$$
\{(u, v) \in V \times V \mid(u, v) \in E \vee(v, u) \in E\}
$$

Definition 1.5 (Reflexivity). A binary relation R on a set S is reflexive if every element of S is related to itself by R.

$$
\forall a . a R a
$$

Example 1.6. The divisibility relation on \mathbb{Z} is reflexive because every integer divides into itself once.

Definition 1.7 (Symmetry). A binary relation R on a set S is symmetric if whenever a is related to b by R, then b is also related to a by R.

$$
\forall a . \forall b .(a R b \Rightarrow b R a)
$$

[^0]Example 1.8. The adjacency relation on a simple graph is symmetric. If a vertex u is adjacent to another vertex v, then v is also adjacent to u.
Definition 1.9 (Transitivity). A binary relation R on a set S is transitive if for any three elements a, b, c of S, if $a R b$ and $b R c$ then $a R c$.

$$
\forall a . \forall b . \forall c .(a R b \wedge b R c \Rightarrow a R c)
$$

Example 1.10. The substring relation on $\{a, b\}^{*}$ is transitive. In fact, it is also reflexive, but it is not symmetric.

Definition 1.11 (Equivalence Relation). A binary relation R on a set S is an equivalence relation if it is
(i) reflexive,
(ii) symmetric, and
(iii) transitive.

Proposition 1.12. The congruence-modulo-2 relation on \mathbb{Z} is defined by

$$
a \equiv b \quad \bmod 2 \Longleftrightarrow 2 \mid(a-b)
$$

It is an equivalence relation.
Proof. (Reflexivity). Let a be any integer. We need to prove that $a \equiv a \bmod 2$. By definition, this is equivalent to proving $2 \mid(a-a)$, or equivalently, $2 \mid 0$. By definition again, this is equivalent to $\exists c .0=2 c$. Setting $c:=0$ yields $0=2 \cdot 0=0$ as desired.
(Symmetry). Let a, b be any integers. Assume that $a \equiv b \bmod 2$. By definition, this hypothesis asserts that there's an integer c so that $a-b=2 c$. We need to prove $\exists k . b-a=2 k$. Setting $k:=-c$ yields $b-a=-(a-b)=-2 c=2(-c)$ as desired.
(Transitivity). Let a, b, c be any integers. Assume that $a \equiv b \bmod 2$ and that $b \equiv c \bmod 2$. By definition, these two hypotheses assert that there are integers n, m so that $a-b=2 n$ and $b-c=2 m$. We need to show that $\exists k . a-c=2 k$. Setting $k:=n+m$ yields $2(n+m)=2 n+2 m=(a-b)+(b-c)=a-b+b-c=a-c$ as desired.

Definition 1.13 (Antisymmetry). A binary relation R on a set S is antisymmetric if for any two elements a, b of S, if $a R b$ and $b R a$ then $a=b$.

Example 1.14. The subset relation \subseteq on $\mathcal{P}(S)$ is antisymmetric. Recall that two sets A and B are equal precisely when $A \subseteq B$ and $B \subseteq A$.

Remark 1.15. Antisymmetry does not imply asymmetry. For example, the indiscrete relation I on the singleton set $\{a\}$, defined as

$$
I=\{(a, a)\}
$$

is both antisymmetric and symmetric.
Definition 1.16 (Preorder). A binary relation is a preorder if it is
(i) reflexive, and
(ii) transitive.

Definition 1.17 (Partial Order). A partial order is a preorder that additionally satisfies antisymmetry.

Proposition 1.18. The divisibility relation on \mathbb{N} is a partial order.
Proof. (Reflexivity): Exercise.
(Transitivity): Exercise. Hint: See Proposition 1.12.
(Antisymmetry): Let a, b be natural numbers so that $a \mid b$ and $b \mid a$. These hypotheses assert that there are natural numbers n, m so that $b=a n$ and that $a=b m$. Thus, $b=(b m) n$. If $b=0$, then since $a=b m=0 m=0, a=b$ as desired. However, if $b \neq 0$, then $m n=1$. Since n, m are natural numbers, $n=m=1$. Thus, $a=b$ as desired.

Remark 1.19. Proposition 1.18 does not hold if we replace \mathbb{N} with \mathbb{Z} because $2 \mid-2$ and $-2 \mid 2$, but $2 \neq-2$. Although the divisibility relation on \mathbb{Z} is not a partial order, it is a preorder.

2. Functions

Intuitively, a function is a rule for assigning each element of a set to a unique element of another set. In set theory, we can encode functions as special binary relations.

Definition 2.1. A binary relation $R \subseteq A \times B$ is (left) total if

$$
\forall a \in A . \exists b \in B .(a, b) \in R
$$

Definition 2.2. A binary relation $R \subseteq A \times B$ is functional if

$$
\forall a \in A . \forall b \in B . \forall c \in B .((a, b) \in R \wedge(a, c) \in R \Rightarrow b=c)
$$

Definition 2.3. A function f from a set A to another set B, denoted $f: A \rightarrow B$ is a binary relation

$$
f \subseteq A \times B
$$

that is total and functional. We write $f(a)=b$ for $(a, b) \in f$. Writing the two conditions in this notation is perhaps more illuminating:
(i) Totality:

$$
\forall a \in A . \exists b \in B . f(a)=b
$$

(ii) Functionality:

$$
\forall a \in A . \forall b \in B . \forall c \in B .(f(a)=b \wedge f(a)=c \Rightarrow b=c)
$$

The set A is called the domain of f, and the set B is called the codomain of f.
Theorem 2.4 (Functional Extensionality). Two functions $f, g: A \rightarrow B$ are equal if and only if $f(a)=g(a)$ for all $a \in A$.
Proof. The "only if" direction is obvious. For the "if" direction, assume that $f(a)=$ $g(a)$ for all $a \in A$. To prove that $f=g$, it suffices to prove $f \subseteq g$ and $g \subseteq f$. Now, suppose that $(a, b) \in f$. Since $f(a)=g(a),(a, g(a)) \in f$. By functionality, $g(a)=b$. Thus, $(a, b) \in g$, proving that $f \subseteq g$. The proof of $g \subseteq f$ is completely analogous.
Definition 2.5. Given two functions $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition $g \circ f: A \rightarrow C$ (reads " g after f ") is a function defined by

$$
(g \circ f)(x)=g(f(x))
$$

Note that $g \circ f$ is defined only if the codomain of f and the domain of g are the same.

Lemma 2.6. Composition is associative, i.e., $(f \circ g) \circ h=f \circ(g \circ h)$.
Proof. Exercise. Hint: Use functional extensionality.
Definition 2.7. For any set S, there is a special function id_{S}, called the identity function on S, defined by

$$
\operatorname{id}_{S}(s)=s
$$

Lemma 2.8. For any function $f: A \rightarrow B, \operatorname{id}_{B} \circ f=f$ and $f \circ \mathrm{id}_{A}=f$.
Proof. Exercise.
Lemmas 2.6 and 2.8 together mean that sets and functions between them assemble into a category. Category theory is an interesting subject that we will sadly not discuss in this class.

Definition 2.9. A function $f: A \rightarrow B$ is injective, denoted $f: A \hookrightarrow B$, if

$$
\forall a \in A . \forall a^{\prime} \in A .\left(f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime}\right)
$$

Definition 2.10. A function $f: A \rightarrow B$ is surjective, denoted $f: A \rightarrow B$, if

$$
\forall b \in B . \exists a \in A . f(a)=b
$$

Theorem 2.11 (Cantor's Theorem). For any set S, there is no surjective functions $f: S \rightarrow \mathcal{P}(S)$.
Proof. Suppose that $f: S \rightarrow \mathcal{P}(S)$. Consider the subset $\{s \in S \mid s \notin f(s)\}$. Since f is surjective, there must be some $s^{\prime} \in S$ so that $f\left(s^{\prime}\right)=\{s \in S \mid s \notin f(s)\}$. If $s^{\prime} \in f\left(s^{\prime}\right)$, then by definition, $s^{\prime} \notin f\left(s^{\prime}\right)$, yielding a contradiction. Similarly, if $s^{\prime} \notin f\left(s^{\prime}\right)$, then by definition, $s^{\prime} \in f\left(s^{\prime}\right)$. This is a contradiction.

Definition 2.12. A function $f: A \rightarrow B$ is bijective if it is injective and surjective.
Definition 2.13. A function $f: A \rightarrow B$ is invertible if there is a function $g: B \rightarrow A$ such that
(i) $f \circ g=\operatorname{id}_{B}$, and
(ii) $g \circ f=\operatorname{id}_{A}$.
g is called the inverse of f. When f is invertible, we write f^{-1} for its inverse.
Theorem 2.14. A function $f: A \rightarrow B$ is invertible if and only if f is bijective.
Proof. The "only if" direction: assume that f is invertible. Then there is a function $f^{-1}: B \rightarrow A$ such that $f \circ f^{-1}=\operatorname{id}_{B}$ and $f^{-1} \circ f=\operatorname{id}_{A}$.
(Injectivity): Let $a, a^{\prime} \in A$ be given. Assume that $f(a)=f\left(a^{\prime}\right)$. Then $\operatorname{id}_{A}(a)=$ $f^{-1}(f(a))=f^{-1}\left(f\left(a^{\prime}\right)\right)=\operatorname{id}_{A}\left(a^{\prime}\right)$. Thus, $a=a^{\prime}$.
(Surjectivity): Let $b \in B$ be given. We need to show that there is some $a \in A$ so that $f(a)=b$. Choose $a:=f^{-1}(b)$, then $f\left(f^{-1}(b)\right)=\operatorname{id}_{B}(b)=b$.

The "if" direction: assume that f is bijective. We need to show that f is invertible. To this end, we construct a relation $f^{-1} \subseteq B \times A$: for each $a \in A$ so that $f(a)=b$, we take $(b, a) \in f^{-1}$. To show that f^{-1} is a function, we must show that it is total and functional. Totality follows from surjectivity of f and functionality follows from injectivity of f. The details are left to the reader as an exercise. Finally, it remains to check that f^{-1} defines an inverse of f. By functional extensionality, it suffices to check:
(i) $\left(f \circ f^{-1}\right)(b)=\operatorname{id}_{B}(b)=b$ for all $b \in B$, and
(ii) $\left(f^{-1} \circ f\right)(a)=\operatorname{id}_{A}(a)=a$ for all $a \in A$.

These two equations follow from the construction of f^{-1}. The remaining details are left as an exercise.

3. Countable Sets and Uncountable Sets

Definition 3.1. A set S is countable if there is a bijection $f: S \rightarrow \mathbb{N}$.
Theorem 3.2. $\mathbb{N}^{\mathbb{N}}$ is uncountable.
Proof. Suppose that $\mathbb{N}^{\mathbb{N}}$ is countable, i.e., $\mathbb{N} \cong \mathbb{N}^{\mathbb{N}}$. A possible interpretation of this hypothesis is that every function $f: \mathbb{N} \rightarrow \mathbb{N}$ can be given a unique natural-number code. That is, there are functions

$$
\begin{align*}
& \text { decode : } \mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}} \tag{3.3}\\
& \text { encode }: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N} \tag{3.4}
\end{align*}
$$

that are mutual inverses. Consider the function

$$
\begin{align*}
& k: \mathbb{N} \rightarrow \mathbb{N} \tag{3.5}\\
& k: n \mapsto \operatorname{decode}(n)(n)+1 \tag{3.6}
\end{align*}
$$

Given a code n, the function k decodes n, yielding a function $\mathbb{N} \rightarrow \mathbb{N}$, then evaluates that function at n, and finally adds 1 to the result.

The function k has a unique code given by encode (k). Now, let's evaluate k at its own code:

$$
\begin{align*}
k(\operatorname{encode}(k)) & =\operatorname{decode}(\operatorname{encode}(k))(\operatorname{encode}(k))+1 \tag{3.7}\\
& =k(\operatorname{encode}(k))+1 \tag{3.8}
\end{align*}
$$

This is a contradiction.
Theorem 3.2 tells us that some functions $f: \mathbb{N} \rightarrow \mathbb{N}$ are uncomputable: there are only countably many programs that one can write, but there are uncountably many endofunctions on \mathbb{N}. Thus, some of those functions do not have a corresponding program that computes it.

[^0]: Date: October 23, 2023.

