FUNCTIONS AND RELATIONS

FRANK TSAI

Contents

1.	Relations	1
2.	Functions	3
3.	Countable Sets and Uncountable Sets	5

1. Relations

Definition 1.1. An n-ary relation R on a set S can be encoded as a subset:

$$R \subseteq S^n$$

We write $R(a, \ldots, z)$ whenever $(a, \ldots, z) \in R$. Binary relations will be the main focus of this class. For these relations, it is customary to use infix notations. That is, we write aRb instead of R(a, b).

Example 1.2. The substring relation \sqsubseteq on $\{a, b\}^*$ is the subset

 $\{(\varepsilon,\varepsilon),(\varepsilon,a),\ldots,(a,a),(a,ab),(a,ba),\ldots\}$

Example 1.3. The divisibility relation \mid on \mathbb{Z} is defined by

$$a \mid b \iff \exists c. b = ac$$

It is the subset

$$\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists c. b = ac\}$$

Example 1.4. The adjacency relation on a simple graph: two vertices u are v are adjacent if they are connected by an edge. It is the subset

$$\{(u,v) \in V \times V \mid (u,v) \in E \lor (v,u) \in E\}$$

Definition 1.5 (Reflexivity). A binary relation R on a set S is *reflexive* if every element of S is related to itself by R.

 $\forall a. aRa$

Example 1.6. The divisibility relation on \mathbb{Z} is reflexive because every integer divides into itself once.

Definition 1.7 (Symmetry). A binary relation R on a set S is symmetric if whenever a is related to b by R, then b is also related to a by R.

$$\forall a. \forall b. (aRb \Rightarrow bRa)$$

Date: October 23, 2023.

Example 1.8. The adjacency relation on a simple graph is symmetric. If a vertex u is adjacent to another vertex v, then v is also adjacent to u.

Definition 1.9 (Transitivity). A binary relation R on a set S is *transitive* if for any three elements a, b, c of S, if aRb and bRc then aRc.

 $\forall a. \forall b. \forall c. (aRb \land bRc \Rightarrow aRc)$

Example 1.10. The substring relation on $\{a, b\}^*$ is transitive. In fact, it is also reflexive, but it is not symmetric.

Definition 1.11 (Equivalence Relation). A binary relation R on a set S is an equivalence relation if it is

- (i) reflexive,
- (ii) symmetric, and
- (iii) transitive.

Proposition 1.12. The congruence-modulo-2 relation on \mathbb{Z} is defined by

 $a \equiv b \mod 2 \iff 2 \mid (a-b)$

It is an equivalence relation.

Proof. (Reflexivity). Let a be any integer. We need to prove that $a \equiv a \mod 2$. By definition, this is equivalent to proving $2 \mid (a - a)$, or equivalently, $2 \mid 0$. By definition again, this is equivalent to $\exists c. 0 = 2c$. Setting c := 0 yields $0 = 2 \cdot 0 = 0$ as desired.

(Symmetry). Let a, b be any integers. Assume that $a \equiv b \mod 2$. By definition, this hypothesis asserts that there's an integer c so that a - b = 2c. We need to prove $\exists k. b - a = 2k$. Setting k := -c yields b - a = -(a - b) = -2c = 2(-c) as desired.

(Transitivity). Let a, b, c be any integers. Assume that $a \equiv b \mod 2$ and that $b \equiv c \mod 2$. By definition, these two hypotheses assert that there are integers n, m so that a - b = 2n and b - c = 2m. We need to show that $\exists k. a - c = 2k$. Setting k := n + m yields 2(n+m) = 2n+2m = (a-b)+(b-c) = a-b+b-c = a-c as desired.

Definition 1.13 (Antisymmetry). A binary relation R on a set S is antisymmetric if for any two elements a, b of S, if aRb and bRa then a = b.

Example 1.14. The subset relation \subseteq on $\mathcal{P}(S)$ is antisymmetric. Recall that two sets A and B are equal precisely when $A \subseteq B$ and $B \subseteq A$.

Remark 1.15. Antisymmetry does **not** imply asymmetry. For example, the indiscrete relation I on the singleton set $\{a\}$, defined as

 $I = \{(a, a)\}$

is both antisymmetric and symmetric.

Definition 1.16 (Preorder). A binary relation is a *preorder* if it is

- (i) reflexive, and
- (ii) transitive.

Definition 1.17 (Partial Order). A *partial order* is a preorder that additionally satisfies antisymmetry.

Proposition 1.18. The divisibility relation on \mathbb{N} is a partial order.

Proof. (Reflexivity): Exercise.

(Transitivity): Exercise. Hint: See Proposition 1.12.

(Antisymmetry): Let a, b be natural numbers so that $a \mid b$ and $b \mid a$. These hypotheses assert that there are natural numbers n, m so that b = an and that a = bm. Thus, b = (bm)n. If b = 0, then since a = bm = 0m = 0, a = b as desired. However, if $b \neq 0$, then mn = 1. Since n, m are natural numbers, n = m = 1. Thus, a = b as desired.

Remark 1.19. Proposition 1.18 does not hold if we replace \mathbb{N} with \mathbb{Z} because $2 \mid -2$ and $-2 \mid 2$, but $2 \neq -2$. Although the divisibility relation on \mathbb{Z} is not a partial order, it is a preorder.

2. Functions

Intuitively, a function is a rule for assigning each element of a set to a unique element of another set. In set theory, we can encode functions as special binary relations.

Definition 2.1. A binary relation $R \subseteq A \times B$ is (left) *total* if

$$\forall a \in A. \exists b \in B. (a, b) \in R$$

Definition 2.2. A binary relation $R \subseteq A \times B$ is *functional* if

 $\forall a \in A. \forall b \in B. \forall c \in B. ((a, b) \in R \land (a, c) \in R \Rightarrow b = c)$

Definition 2.3. A function f from a set A to another set B, denoted $f : A \to B$ is a binary relation

$$f \subseteq A \times B$$

that is *total* and *functional*. We write f(a) = b for $(a, b) \in f$. Writing the two conditions in this notation is perhaps more illuminating:

(i) Totality:

$$\forall a \in A. \exists b \in B. f(a) = b$$

(ii) Functionality:

$$\forall a \in A. \forall b \in B. \forall c \in B. (f(a) = b \land f(a) = c \Rightarrow b = c)$$

The set A is called the *domain* of f, and the set B is called the *codomain* of f.

Theorem 2.4 (Functional Extensionality). Two functions $f, g : A \to B$ are equal if and only if f(a) = g(a) for all $a \in A$.

Proof. The "only if" direction is obvious. For the "if" direction, assume that f(a) = g(a) for all $a \in A$. To prove that f = g, it suffices to prove $f \subseteq g$ and $g \subseteq f$. Now, suppose that $(a,b) \in f$. Since f(a) = g(a), $(a,g(a)) \in f$. By functionality, g(a) = b. Thus, $(a,b) \in g$, proving that $f \subseteq g$. The proof of $g \subseteq f$ is completely analogous.

Definition 2.5. Given two functions $f : A \to B$ and $g : B \to C$, the composition $g \circ f : A \to C$ (reads "g after f") is a function defined by

$$(g \circ f)(x) = g(f(x))$$

Note that $g \circ f$ is defined only if the codomain of f and the domain of g are the same.

Lemma 2.6. Composition is associative, i.e., $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof. Exercise. Hint: Use functional extensionality.

Definition 2.7. For any set S, there is a special function id_S , called the *identity* function on S, defined by

 $\operatorname{id}_S(s) = s$

Lemma 2.8. For any function $f : A \to B$, $id_B \circ f = f$ and $f \circ id_A = f$.

Proof. Exercise.

Lemmas 2.6 and 2.8 together mean that sets and functions between them assemble into a category. Category theory is an interesting subject that we will sadly not discuss in this class.

Definition 2.9. A function $f : A \to B$ is *injective*, denoted $f : A \to B$, if $\forall a \in A. \forall a' \in A. (f(a) = f(a') \Rightarrow a = a')$

Definition 2.10. A function $f : A \to B$ is *surjective*, denoted $f : A \to B$, if

 $\forall b \in B. \exists a \in A. f(a) = b$

Theorem 2.11 (Cantor's Theorem). For any set S, there is no surjective functions $f: S \twoheadrightarrow \mathcal{P}(S)$.

Proof. Suppose that $f: S \to \mathcal{P}(S)$. Consider the subset $\{s \in S \mid s \notin f(s)\}$. Since f is surjective, there must be some $s' \in S$ so that $f(s') = \{s \in S \mid s \notin f(s)\}$. If $s' \in f(s')$, then by definition, $s' \notin f(s')$, yielding a contradiction. Similarly, if $s' \notin f(s')$, then by definition, $s' \in f(s')$. This is a contradiction. \Box

Definition 2.12. A function $f: A \to B$ is *bijective* if it is injective and surjective.

Definition 2.13. A function $f : A \to B$ is *invertible* if there is a function $g : B \to A$ such that

(i) $f \circ g = \mathrm{id}_B$, and

(ii) $g \circ f = \mathrm{id}_A$.

g is called the inverse of f. When f is invertible, we write f^{-1} for its inverse.

Theorem 2.14. A function $f : A \to B$ is invertible if and only if f is bijective.

Proof. The "only if" direction: assume that f is invertible. Then there is a function $f^{-1}: B \to A$ such that $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$.

(Injectivity): Let $a, a' \in A$ be given. Assume that f(a) = f(a'). Then $id_A(a) = f^{-1}(f(a)) = f^{-1}(f(a')) = id_A(a')$. Thus, a = a'.

(Surjectivity): Let $b \in B$ be given. We need to show that there is some $a \in A$ so that f(a) = b. Choose $a := f^{-1}(b)$, then $f(f^{-1}(b)) = \mathrm{id}_B(b) = b$.

The "if" direction: assume that f is bijective. We need to show that f is invertible. To this end, we construct a relation $f^{-1} \subseteq B \times A$: for each $a \in A$ so that f(a) = b, we take $(b, a) \in f^{-1}$. To show that f^{-1} is a function, we must show that it is total and functional. Totality follows from surjectivity of f and functionality follows from injectivity of f. The details are left to the reader as an exercise. Finally, it remains to check that f^{-1} defines an inverse of f. By functional extensionality, it suffices to check:

(i) $(f \circ f^{-1})(b) = \mathrm{id}_B(b) = b$ for all $b \in B$, and

(ii) $(f^{-1} \circ f)(a) = \operatorname{id}_A(a) = a$ for all $a \in A$.

These two equations follow from the construction of f^{-1} . The remaining details are left as an exercise.

3. Countable Sets and Uncountable Sets

Definition 3.1. A set S is *countable* if there is a bijection $f: S \to \mathbb{N}$.

Theorem 3.2. $\mathbb{N}^{\mathbb{N}}$ is uncountable.

Proof. Suppose that $\mathbb{N}^{\mathbb{N}}$ is countable, i.e., $\mathbb{N} \cong \mathbb{N}^{\mathbb{N}}$. A possible interpretation of this hypothesis is that every function $f : \mathbb{N} \to \mathbb{N}$ can be given a unique natural-number code. That is, there are functions

$$(3.3) \qquad \qquad \mathsf{decode}: \mathbb{N} \to \mathbb{N}^{\mathbb{N}}$$

$$(3.4) \qquad \qquad \mathsf{encode}: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$$

that are mutual inverses. Consider the function

$$(3.5) k: \mathbb{N} \to \mathbb{N}$$

$$(3.6) k: n \mapsto \mathsf{decode}(n)(n) + 1$$

Given a code n, the function k decodes n, yielding a function $\mathbb{N} \to \mathbb{N}$, then evaluates that function at n, and finally adds 1 to the result.

The function k has a unique code given by $\mathsf{encode}(k).$ Now, let's evaluate k at its own code:

$$(3.7) k(\mathsf{encode}(k)) = \mathsf{decode}(\mathsf{encode}(k))(\mathsf{encode}(k)) + 1$$

 $(3.8) = k(\mathsf{encode}(k)) + 1$

This is a contradiction.

Theorem 3.2 tells us that some functions $f : \mathbb{N} \to \mathbb{N}$ are uncomputable: there are only countably many programs that one can write, but there are uncountably many endofunctions on \mathbb{N} . Thus, some of those functions do not have a corresponding program that computes it.