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Definition 0.1. The greatest common divisor (gcd) of two integers a and b, is an integer k such that

• k | a

• k | b

• ∀k′ ∈ Z. (k′ | a) ∧ (k′ | b) ⇒ (k′ | k)

Remark 0.2. Note that Definition 0.1 allows nonunique gcds. In fact, if k is a gcd of a and b, then so is −k. This
can be remedied by choosing the nonnegative one. We write gcd(a, b) for the nonnegative integer satisfying the
conditions in Definition 0.1.

Remark 0.3. Although gcds is defined for integers, its computation can be done using just nonnegative integers
(c.f., Lemmas 0.5 and 0.6).

Lemma 0.4 is the backbone lemma that enables us to device a recursive algorithm to compute gcds.

Lemma 0.4. For any integers a, b, and c, gcd(a− cb, b) = gcd(a, b).

Proof. Let k = gcd(a−cb, b). It follows by definition that k | b. Since a−cb = dk for some integer d, we can express
a as a = dk + cb. But since b is divisible by k, a is also divisible by k.

It remains to show that, for any integer k′, if k′ divides both a and b, then k′ also divides k. To this end, it
suffices to show that k′ | (a− cb) and that k′ | b. The latter follows immediately by assumption. As for the former,
since k′ divides both a and b by assumption, it follows that k′ divides a− cb.

Lemma 0.5. For all integers a and b, gcd(a, b) = gcd(b, a).

Proof. Exercise.

Lemma 0.6. For all integers a and b, gcd(−a, b) = gcd(a, b).

Proof. Exercise.

Lemma 0.7. For any integer a, gcd(0, a) = a.

Proof. Exercise.

If we set c := 1 in Lemma 0.4, then we get ∀a, b ∈ Z. gcd(a − b, b) = gcd(a, b). This allows us to calculate the
gcd of two integers as follows.
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Example 0.8.

gcd(321, 123) = gcd(198, 123) (1)
= gcd(75, 123) = gcd(123, 75) (2)
= gcd(48, 75) = gcd(75, 48) (3)
= gcd(27, 48) = gcd(48, 27) (4)
= gcd(21, 27) = gcd(27, 21) (5)
= gcd(6, 21) = gcd(21, 6) (6)
= gcd(15, 6) (7)
= gcd(9, 6) (8)
= gcd(3, 6) = gcd(6, 3) (9)
= gcd(3, 3) (10)
= gcd(0, 3) = 3 (11)

Instead of choosing a fixed c in each step, Euclid’s algorithm chooses a more clever c. This choice is given by
Euclid’s division lemma.

Lemma 0.9 (Euclid’s division lemma). Given two integers a and b, with b ̸= 0, there are unique integers q and r
such that

• a = bq + r

• 0 ≤ r < |b|, where |b| is the absolute value of b

Now, to compute gcd(a, b), we can choose c := q, where q is the unique integer such that a = bq + r. Then,
gcd(a, b) = gcd(a − qb, b). Note that a − qb = r, so we obtain a formula in terms of the remainder: gcd(a, b) =
gcd(r, b). Now, Example 0.8 can be computed as follows.

Example 0.10.

gcd(321, 123) = gcd(321 mod 123, 123) (12)
= gcd(75, 123) = gcd(123, 75) = gcd(123 mod 75, 75) (13)
= gcd(48, 75) = gcd(75, 48) = gcd(75 mod 48, 48) (14)
= gcd(27, 48) = gcd(48, 27) = gcd(48 mod 27, 27) (15)
= gcd(21, 27) = gcd(27, 21) = gcd(27 mod 21, 21) (16)
= gcd(6, 21) = gcd(21, 6) = gcd(21 mod 6, 6) (17)
= gcd(3, 6) = gcd(6, 3) = gcd(6 mod 3, 3) (18)
= gcd(0, 3) = 3 (19)

Theorem 0.11. In each step of Euclid’s algorithm computing gcd(a, b), both arguments can be expressed as a
combination of a and b.

Proof. Let n be the number of steps taken and an and bn be the first and the second argument at step n, respectively.
We need to show that an = u1a+ v1b and bn = u2a+ v2b for some integers u1, v1, u2, and v2.

The base case is clear.
gcd(a, b) = gcd(1a+ 0b, 0a+ 1b).

In the induction step, let us assume without loss of generality that bn < an. We can always swap them if it is not
the case. By definition, an+1 = r, where r = an− bnq, and bn+1 = bn. By the induction hypothesis, bn = u2a+ v2b,
so clearly bn+1 can be expressed as a combination of a and b. As for an+1, we have an = u1a+ v1b by the induction
hypothesis, so

an+1 = an − bnq = (u1a+ v1b)− (v2a+ v2b)q = (u1 − v2q)a+ (v1 − v2q)b

Corollary 0.12 (Bézout’s lemma). If k is gcd(a, b), then k = ua+ vb for some integers u and v.
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