SET THEORY

Frank Tsai

February 22, 2024

Contents

Contents 1
1 Introduction 1
2 Sets 1
3 Subsets 2
4 Equality 2
5 Comprehension 2
6 Power Set 3
7 Union 3
8 Intersection 3

1. INTRODUCTION

Set theory appeared in Cantor's 1874 paper: „Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen." Later, Bertrand Russell discovered a contradiction in Cantor's set theory, sparking the foundational crisis of mathematics. As a result, mathematicians developed several different flavors of set theory, among which was a well-known axiomatization of set theory by Zermelo, Fraenkel, and Skolem.

2. SETS

Roughly, a set is a collection of elements. The language of set theory contains a binary predicate symbol \in, called the membership relation. $x \in y$ means x is an element of y.

Example 2.1.

1. The empty set: \varnothing.
2. The set containing the empty set: $\{\varnothing\}$.
3. A set containing 3 elements: $\{a, b, c\}$.
4. The set of all natural numbers: $\mathbb{N}=\{0,1,2, \ldots\}$.
5. The set of all integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
6. The set containing \mathbb{N} and $\mathbb{Z}:\{\mathbb{N}, \mathbb{Z}\}$.

Example 2.2.

1. Nothing is in the empty set: $x \notin \varnothing$.
2. The set containing the empty set has an element: $\varnothing \in\{\varnothing\}$.
3. $a \in\{a, b, c\}, b \in\{a, b, c\}, c \in\{a, b, c\}$.
4. $\mathbb{N} \in\{\mathbb{N}, \mathbb{Z}\}, \mathbb{Z} \in\{\mathbb{N}, \mathbb{Z}\}$, but $0 \notin\{\mathbb{N}, \mathbb{Z}\}$.

3. SUBSETS

Definition 3.1. A set x is a subset of y, denoted $x \subseteq y$, if every element in x is also in y, i.e.,

$$
\forall z \cdot(z \in x \Rightarrow z \in y)
$$

The relation \subseteq is called set inclusion.
Lemma 3.2. The empty set is a subset of any set.

$$
\forall y . \varnothing \subseteq y
$$

Proof. Let y be any set. By definition, $\varnothing \subseteq y:=\forall z \cdot(z \in \varnothing \Rightarrow z \in y)$. Let z be given. Assume that $z \in \varnothing$, but this is impossible since $z \notin \varnothing$.

Lemma 3.3. Every set is a subset of itself.

$$
\forall x . x \subseteq x
$$

Proof. Exercise.
Lemma 3.4. The subset relation is transitive, i.e.,

$$
\forall x . \forall y . \forall z . x \subseteq y \Rightarrow y \subseteq z \Rightarrow x \subseteq z
$$

Proof. Exercise.

Example 3.5.

1. \varnothing has a subset \varnothing.
2. $\{\varnothing\}$ has subsets \varnothing and $\{\varnothing\}$.
3. $\{a, b\}$ has subsets $\varnothing,\{a\},\{b\}$, and $\{a, b\}$.
4. $\{a, b, c\}$ has subsets $\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$, and $\{a, b, c\}$.

4. EQUALITY

Two sets are equal when they contain the same elements. We can express this in terms of the set inclusion relation.

$$
\forall x . \forall y . x \subseteq y \Rightarrow y \subseteq x \Rightarrow x=y
$$

Given two sets x and y, to prove that $x=y$, it suffices to prove $x \subseteq y$ and $y \subseteq x$.

Example 4.1.

1. $\{a, b, c, d, d\}=\{a, b, c, d\}$.
2. $\{a, b, c\}=\{c, b, a\}$.

5. COMPREHENSION

Given a set w, there is a subset of w whose elements satisfy a given property φ.

$$
\{x \in w \mid \varphi(x)\}
$$

Example 5.1.

1. The set of all even natural numbers: $\{x \in \mathbb{N} \mid$ even $(x)\}$.
2. The set of all odd natural numbers: $\{x \in \mathbb{N} \mid \operatorname{odd}(x)\}$.
3. The set of all integers divisible by $2:\{x \in \mathbb{Z} \mid x \equiv 0 \bmod 2\}$.
4. The set of all real numbers between 0 and 1 (inclusive): $\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$.

6. POWER SET

In Example 6.2, $\{a, b, c\}$ has subsets $\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$, and $\{a, b, c\}$. These subsets form a set

$$
\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Definition 6.1. Let x be a set. The power set of x, denoted $\mathcal{P}(x)$, is the set of all subsets of x.
Example 6.2.

1. $\mathcal{P}(\varnothing)=\{\varnothing\}$.
2. $\mathcal{P}(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$.
3. $\mathcal{P}(\{\varnothing,\{\varnothing\}\})=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}$.
4. $\mathcal{P}(\{a, b, c\})=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.

Theorem 6.3 (Cantor's Theorem). For any set x, there is no surjective function $f: x \rightarrow \mathcal{P}(x)$.
Proof. Deferred to a later module.

7. UNION

Definition 7.1. The union of two sets x and y, denoted as $x \cup y$, is a set that contains exactly those elements of x and those of y.

Example 7.2.

1. $\{1,2,3\} \cup\{a, b, c\}=\{1,2,3, a, b, c\}$.
2. $\{a, b, c\} \cup\{b, c, d\} \cup\{c, d, e\}=\{a, b, c, d, e\}$.

Remark 7.3. Set union can be characterized by a universal property: $x \cup y$ is the "smallest" set so that $x \subseteq x \cup y$ and $y \subseteq x \cup y$. That is, for any sets x, y, and z, if $x \subseteq z$ and $y \subseteq z$ then $x \cup y \subseteq z$, i.e.,

$$
x \subseteq z \Rightarrow y \subseteq z \Rightarrow x \cup y \subseteq z
$$

8. INTERSECTION

Definition 8.1. The intersection of two sets x and y, denoted as $x \cap y$, is a set that contains exactly those elements that x and y have in common.

Example 8.2.

1. $\{1,2,3\} \cap\{a, b, c\}=\varnothing$.
2. If $\{a, b, c\} \cap\{b, c, d\} \cap\{c, d, e\}=\{c\}$.

Remark 8.3. Set intersection can be characterized by a universal property: $x \cap y$ is the "largest" set so that $x \cap y \subseteq x$ and $x \cap y \subseteq y$. That is, for any sets x, y, and z, if $z \subseteq x$ and $z \subseteq y$ then $z \subseteq x \cap y$, i.e.,

$$
z \subseteq x \Rightarrow z \subseteq y \Rightarrow z \subseteq x \cap y
$$

