SET THEORY

Frank Tsai

February 22, 2024

Contents

Conton	te
Conten	105

nten	ntents 1			
1	Introduction	1		
2	Sets	1		
3	Subsets	2		
4	Equality	2		
5	Comprehension	2		
6	Power Set	3		
7	Union	3		
8	Intersection	3		

1. INTRODUCTION

Set theory appeared in Cantor's 1874 paper: "Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen." Later, Bertrand Russell discovered a contradiction in Cantor's set theory, sparking the foundational crisis of mathematics. As a result, mathematicians developed several different flavors of set theory, among which was a well-known axiomatization of set theory by Zermelo, Fraenkel, and Skolem.

2. SETS

Roughly, a set is a collection of elements. The language of set theory contains a binary predicate symbol \in , called the membership relation. $x \in y$ means x is an element of y.

Example 2.1.

- 1. The empty set: \emptyset .
- 2. The set containing the empty set: $\{\emptyset\}$.
- 3. A set containing 3 elements: $\{a, b, c\}$.
- 4. The set of all natural numbers: $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- 5. The set of all integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$
- 6. The set containing \mathbb{N} and \mathbb{Z} : { \mathbb{N} , \mathbb{Z} }.

Example 2.2.

- 1. Nothing is in the empty set: $x \notin \emptyset$.
- 2. The set containing the empty set has an element: $\emptyset \in \{\emptyset\}$.
- 3. $a \in \{a, b, c\}, b \in \{a, b, c\}, c \in \{a, b, c\}.$
- 4. $\mathbb{N} \in \{\mathbb{N}, \mathbb{Z}\}, \mathbb{Z} \in \{\mathbb{N}, \mathbb{Z}\}, \text{ but } 0 \notin \{\mathbb{N}, \mathbb{Z}\}.$

3. SUBSETS

Definition 3.1. A set x is a subset of y, denoted $x \subseteq y$, if every element in x is also in y, i.e.,

$$\forall z . (z \in x \Rightarrow z \in y)$$

The relation \subseteq is called *set inclusion*.

Lemma 3.2. The empty set is a subset of any set.

 $\forall y. \varnothing \subseteq y$

Proof. Let y be any set. By definition, $\emptyset \subseteq y := \forall z . (z \in \emptyset \Rightarrow z \in y)$. Let z be given. Assume that $z \in \emptyset$, but this is impossible since $z \notin \emptyset$.

Lemma 3.3. Every set is a subset of itself.

 $\forall x. x \subseteq x$

Proof. Exercise.

Lemma 3.4. The subset relation is transitive, i.e.,

$$\forall x. \forall y. \forall z. \ x \subseteq y \Rightarrow y \subseteq z \Rightarrow x \subseteq z$$

Proof. Exercise.

Example 3.5.

- 1. \emptyset has a subset \emptyset .
- 2. $\{\emptyset\}$ has subsets \emptyset and $\{\emptyset\}$.
- 3. $\{a, b\}$ has subsets \emptyset , $\{a\}$, $\{b\}$, and $\{a, b\}$.
- 4. $\{a, b, c\}$ has subsets \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, and $\{a, b, c\}$.

4. EQUALITY

Two sets are equal when they contain the same elements. We can express this in terms of the set inclusion relation.

$$\forall x. \forall y. \; x \subseteq y \Rightarrow y \subseteq x \Rightarrow x = y$$

Given two sets x and y, to prove that x = y, it suffices to prove $x \subseteq y$ and $y \subseteq x$.

Example 4.1.

- 1. $\{a, b, c, d, d\} = \{a, b, c, d\}.$
- 2. $\{a, b, c\} = \{c, b, a\}.$

5. COMPREHENSION

Given a set w, there is a subset of w whose elements satisfy a given property φ .

 $\{x \in w \mid \varphi(x)\}$

Example 5.1.

- 1. The set of all even natural numbers: $\{x \in \mathbb{N} \mid \operatorname{even}(x)\}$.
- 2. The set of all odd natural numbers: $\{x \in \mathbb{N} \mid \text{odd}(x)\}$.
- 3. The set of all integers divisible by 2: $\{x \in \mathbb{Z} \mid x \equiv 0 \mod 2\}$.
- 4. The set of all real numbers between 0 and 1 (inclusive): $\{x \in \mathbb{R} \mid 0 \le x \le 1\}$.

6. POWER SET

In Example 6.2, $\{a, b, c\}$ has subsets \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, and $\{a, b, c\}$. These subsets form a set

 $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Definition 6.1. Let x be a set. The *power set* of x, denoted $\mathcal{P}(x)$, is the set of all subsets of x.

Example 6.2.

- 1. $\mathcal{P}(\emptyset) = \{\emptyset\}.$
- 2. $\mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}\}.$
- 3. $\mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}.$
- 4. $\mathcal{P}(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$

Theorem 6.3 (Cantor's Theorem). For any set x, there is no surjective function $f: x \to \mathcal{P}(x)$.

Proof. Deferred to a later module.

7. UNION

Definition 7.1. The *union* of two sets x and y, denoted as $x \cup y$, is a set that contains exactly those elements of x and those of y.

Example 7.2.

- 1. $\{1, 2, 3\} \cup \{a, b, c\} = \{1, 2, 3, a, b, c\}.$
- 2. $\{a, b, c\} \cup \{b, c, d\} \cup \{c, d, e\} = \{a, b, c, d, e\}.$

Remark 7.3. Set union can be characterized by a universal property: $x \cup y$ is the "smallest" set so that $x \subseteq x \cup y$ and $y \subseteq x \cup y$. That is, for any sets x, y, and z, if $x \subseteq z$ and $y \subseteq z$ then $x \cup y \subseteq z$, i.e.,

$$x \subseteq z \Rightarrow y \subseteq z \Rightarrow x \cup y \subseteq z$$

8. INTERSECTION

Definition 8.1. The *intersection* of two sets x and y, denoted as $x \cap y$, is a set that contains exactly those elements that x and y have in common.

Example 8.2.

- 1. $\{1, 2, 3\} \cap \{a, b, c\} = \emptyset$.
- 2. If $\{a, b, c\} \cap \{b, c, d\} \cap \{c, d, e\} = \{c\}.$

Remark 8.3. Set intersection can be characterized by a universal property: $x \cap y$ is the "largest" set so that $x \cap y \subseteq x$ and $x \cap y \subseteq y$. That is, for any sets x, y, and z, if $z \subseteq x$ and $z \subseteq y$ then $z \subseteq x \cap y$, i.e.,

$$z \subseteq x \Rightarrow z \subseteq y \Rightarrow z \subseteq x \cap y$$